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ABSTRACT

Lee, Taeksang Ph.D., Purdue University, August 2020. Improving Reconstructive
Surgery through Computational Modeling of Skin Mechanics. Major Professor:
Adrian Buganza Tepole Professor.

Excessive deformation and stress of skin following reconstructive surgery plays a

crucial role in wound healing, often leading to complications. Yet, despite of this

concern, surgeries are still planned and executed based on each surgeon’s training

and experience rather than quantitative engineering tools. The limitations of current

treatment planning and execution stem in part from the difficulty in predicting the

mechanical behavior of skin, challenges in directly measuring stress in the operating

room, and inability to predict the long term adaptation of skin following reconstruc-

tive surgery. Computational modeling of soft tissue mechanics has emerged as an

ideal candidate to determine stress contours over sizable skin regions in realistic sit-

uations. Virtual surgeries with computational mechanics tools will help surgeons

explore different surgeries preoperatively, make prediction of stress contours, and

eventually aid the surgeon in planning for optimal wound healing. While there has

been significant progress on computational modeling of both reconstructive surgery

and skin mechanical and mechanobiological behavior, there remain major gaps pre-

venting computational mechanics to be widely used in the clinical setting. At the

preoperative stage, better calibration of skin mechanical properties for individual pa-

tients based on minimally invasive mechanical tests is still needed. One of the key

challenges in this task is that skin is not stress-free in vivo. In many applications

requiring large skin flaps, skin is further grown with the tissue expansion technique.

Thus, better understanding of skin growth and the resulting stress-free state is re-

quired. The other most significant challenge is dealing with the inherent variability of
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mechanical properties and biological response of biological systems. Skin properties

and adaptation to mechanical cues changes with patient demographic, anatomical lo-

cation, and from one individual to another. Thus, the precise model parameters can

never be known exactly, even if some measurements are available. Therefore, rather

than expecting to know the exact model describing a patient, a probabilistic approach

is needed. To bridge the gaps, this dissertation aims to advance skin biomechanics

and computational mechanics tools in order to make virtual surgery for clinical use

a reality in the near future. In this spirit, the dissertation constitutes three parts:

skin growth and its incompatibility, acquisition of patient-specific geometry and skin

mechanical properties, and uncertainty analysis of virtual surgery scenarios.

Skin growth induced by tissue expansion has been widely used to gain extra skin

before reconstructive surgery. Within continuum mechanics, growth can be described

with the split of the deformation gradient akin to plasticity. We propose a probabilis-

tic framework to do uncertainty analysis of growth and remodeling of skin in tissue

expansion. Our approach relies on surrogate modeling through multi-fidelity Gaus-

sian process regression. This work is being used calibrate the computational model

against animal model data. Details of the animal model and the type of data obtained

are also covered in the thesis. One important aspect of the growth and remodeling

process is that it leads to residual stress. It is understood that this stress arises

due to the nonhomogeneous growth deformation. In this dissertation we character-

ize the geometry of incompatibility of the growth field borrowing concepts originally

developed in the study of crystal plasticity. We show that growth produces unique

incompatibility fields that increase our understanding of the development of residual

stress and the stress-free configuration of tissues. We pay particular attention to the

case of skin growth in tissue expansion.

Patient-specific geometry and material properties are the focus on the second

part of the thesis. Minimally invasive mechanical tests based on suction have been

developed which can be used in vivo, but these tests offer only limited characterization

of an individual’s skin mechanics. Current methods have the following limitations:
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only isotropic behavior can be measured, the calibration problem is done with inverse

finite element methods or simple analytical calculations which are inaccurate, the

calibration yields a single deterministic set of parameters, and the process ignores

any previous information about the mechanical properties that can be expected for

a patient. To overcome these limitations, we recast the calibration problem in a

Bayesian framework. To sample from the posterior distribution of the parameters for

a patient given a suction test, the method relies on an inexpensive Gaussian process

surrogate. For the patient-specific geometry, techniques such as magnetic resonance

imaging or computer tomography scans can be used. Such approaches, however,

require specialized equipment and set up and are not affordable in many scenarios.

We propose to use multi-view stereo (MVS) to capture patient-specific geometry.

The last part of the dissertation focuses on uncertainty analysis of the reconstruc-

tive procedure itself. To achieve uncertainty analysis in the clinical setting we propose

to create surrogate and reduced order models, especially principal component analysis

and Gaussian process regression. We first show the characterization of stress profiles

under uncertainty for the three most common flap designs. For these examples we

deal with idealized geometries. The probabilistic surrogates enable not only tasks

such as fast prediction and uncertainty quantification, but also optimization. Based

on a global sensitivity analysis we show that the direction of anisotropy of skin with

respect to the flap geometry is the most important parameter controlled by the sur-

geon, and we show hot to optimize the flap in this idealized setting. We conclude

with the application of the probabilistic surrogates to perform uncertainty analysis

in patient-specific geometries. In summary, this dissertation focuses on some of the

fundamental challenges that needed to be addressed to make virtual surgery models

ready for clinical use. We anticipate that our results will continue to shape the way

computational models continue to be incorporated in reconstructive surgery plans.
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1. INTRODUCTION

Optimal wound healing outcomes following reconstructive surgery, scarless healing

being the ultimate goal, remain out of reach. Among the known critical factors im-

plicated in wound healing, mechanical cues are crucial but there is still a gap in our

fundamental understanding of how stress and deformations lead to poor healing out-

comes (Fig. 1.1). This gap in our knowledge further hinders our ability to anticipate

complications and plan for the optimal procedure [1]. Based on in vitro an animal

experiments, as well as clinical experience, we know that mechanical stress following

reconstructive surgery can lead to wound healing delay, hypertrophic scars, wound

dehiscence, and skin necrosis [2–5]. Yet, despite of this knowledge, surgeries are still

planned and executed based on each surgeon’s training and experience rather than

quantitative engineering tools. This limitations of current clinical practice stem in

part from the difficulty in directly measuring stress in the operating room. Mea-

suring stress and deformation during surgery is not practically feasible beyond very

controlled settings and ideal clinical cases [6]. Besides, each patient requires a unique

procedure [7], has individual skin mechanical properties and healing response, and

stress distributions in complex surgeries are not intuitive. Surgical reconstruction of

large skin lesions such as burn injuries and giant birth defects, in particular, lead to

intricate tissue rearrangement procedures [8].

An important challenge in predicting stress to plan for optimal treatment is the

fact that biological systems are inherently stochastic and there is significant variation

in mechanical and biological response across individuals. For instance, tissues in vivo

are not stress-free [9]. For example, skin in vivo is under a state of prestrain due

to its natural growth history during development [10]. In clinical techniques such as

skin expansion, the skin is stretched and induced to grow, changing its stress-free

configuration [7]. Being able to deal with uncertainty in the stress-free configuration
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is a basic step to correctly calculate stress due to reconstructive surgery [11, 12]. In

addition to the amount of in vivo prestrain, the mechanical response of the tissue

also shows uncertainty. Since the mechanical behavior of collagenous tissues like skin

is highly nonlinear, uncertainty analysis of reconstructive procedures is not trivial

but needed. Lastly, the biological response governing skin growth and wound healing

is also uncertain. Thus, predictions of healing outcomes have to incorporate this

variability in order to make the best possible decisions with the information available.Constitutive Modelling of Skin Growth 79

Fig. 1 Complications after tissue expansion. (a) 11-year-old patient with giant nevus. (b) Tissue
expanders were used to grow skin by chronic overstretch. (c) Expanded tissue was advanced to
correct the defect. (d–f) Excessive tension due to insufficient skin growth led to a chronic wound.
(g–h) After full thickness graft there was scarring and contracture at the neck and shoulder

risk of malignancy and constitute a concern for psychological development during
childhood and are hence typically resected early in life [13]. In the case shown, two
tissue expanders were placed and gradually inflated over several months. At the end
of the inflation, the expanders were removed and the newly grown skin was used
to reconstruct the adjacent area. Unfortunately, the amount of grown skin was less
than needed and the resulting flaps were closed under significant tension, leading to
wound dehiscence and necrosis. Ultimately, a full thickness graft was needed, but
the secondary intention healing concluded in a hypertrophic scar with contracture.
Had there been tools to predict and monitor the amount of newly grown skin and the
resulting flap deformation, this patient would have received an uneventful treatment
plan without complications.

Schematically, the underlying biological control of skin adaptation is shown
in Fig. 2. In vivo, the skin is in a homeostatic configuration, possibly with some
residual stress [14]. The tissue expanders, gradually inflated over a long time period,
impose supra-physiological deformations that trigger local adaptation, i.e. growth.
As a result, homeostasis is regained locally. When the expander is removed, the

Fig. 1.1.: Wound complications after tissue expansion and subsequent reconstructive
surgery. (a) 11-year-old patient with giant nevus. (b) Tissue expanders were utilized
to grow skin by chronic overstretch. (c) Gained extra skin was advanced to correct
the defect. (d-f) Excessive tension due to insufficient skin growth led to a chronic
wound. (g, h) After full thickness graft, there was scarring and contracture at the
neck and shoulder. Reprinted by permission from [13], Springer Nature, Copyright
2019.
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Computational modeling of soft tissue mechanics has emerged as a powerful tool

to determine stress contours over sizable skin regions in realistic situations [14, 15].

While it remains a technology uncommon to clinicians, the finite element method

(FEM), for example, is a natural engineering technology that can be used to analyze

the biomechanics of surgery and, thus, used to optimize flap designs [16–19]. Virtual

surgeries with computational mechanics tools will enable surgeons to explore different

surgeries preoperatively, make prediction of stress contours, and eventually aid the

surgeon in planning for optimal wound healing. The central objective of this disser-

tation is to advance skin biomechanics and computational mechanics tools in order

to make virtual surgery for clinical use a reality in the near future.

In order to achieve the overall goal, advances in several areas of computational

biomechanics are needed. First of all, characterization of incompatibility, residual

stresses, and the stress-free configuration of skin affected by growth is of importance

to predict the correct stresses in reconstructive surgery scenarios of interest. Basically

biological tissues undergo nonhomogeneous growth naturally and in tissue expansion.

The growth field is generally complex. A better understanding on the incompatibility

and residual stress in soft tissue can improve methods to determine the stress-free state

of skin with minimally invasive tools. Importantly, poor understanding on stress-free

configuration directly weakens the confidence on the results of FEM for virtual surgery

simulations.

Computational models of soft tissues need patient-specific geometries and material

properties. Much progress has been done in this area, but some key gaps remain. As

mentioned before, tissues show stochasticity and variability. Because the biological

and mechanical response is highly nonlinear, the effect of this uncertainty on the

resulting stress contour and healing response has not been characterized but is key to

make correct predictions. Even with better non-invasive mechanical tests, it may not

be even possible to know exactly these parameters for a patient before the surgery.

Questions that are currently out of each include: given prior information from similar

patients, what is the best outcome possible? What is the probability of achieving a
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desired stress profile given this uncertainty? given some partial measurements, what

is the best guess for the material properties of an individual? These are questions

that we enable through the research presented here.

Extensive mechanical characterization of skin samples with uniaxial [20], biax-

ial [21,22], bulge [23], torsion [24], indentation [25,26], suction tests [27,28], and with

custom robotic manipulators [29] has resulted in a large dataset on mechanical behav-

ior of skin. However, most of these tests are done ex vivo, and with a limited number

of subjects given the variability that has been found across different studies [30].

Mechanical characterization of in vivo skin is much more relevant to patient-specific

simulations. Suction devices have emerged as a tool for this need. However, suction

tests provide even less information than the ex vivo tests. Moreover, for both in vivo

and ex vivo tests, material parameters are obtained by classical inverse methods or

analytical approximations which are often inaccurate, ignore previous information,

and yield a single set of parameters for what in reality may be an ill-posed problem

with multiple valid solutions. This gap is tackled in this thesis. We create fast, ac-

curate, and automated parameter identification of individuals in vivo in a Bayesian

framework using machine learning surrogates.

Another key challenge is to easily obtain patient-specific geometries. Shape and

size of skin lesions are very different across clinical cases, and there are anatomical

regions that pose more difficult challenges than others. The face, head and neck region

is particularly complex. The geometry of this anatomical area is full of detail and

constraints for the surgeon. Planning surgeries in this area can particularly benefit

from an accurate geometry in individual cases [31]. Computational simulations using

idealized and generic cases enable us to guide and optimize flap designs in general, but

every patient requires an individualized treatment in the end [7,32]. Medical imaging

has progressed enormously in recent decades, and there are many alternatives to

obtain patient-specific geometries such as magnetic resonance imaging (MRI) [33] or

computer tomography (CT) scans [34]. Still, these methods suffer from the same

limitations: they are expensive and require specialized equipment. Skin has the
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advantage of being easily accessible for imaging with more flexible and affordable

methods. Three-dimensional (3D) scanners are one alternative to obtain patient

geometries. 3D cameras are also on the rise. These methods are still out of reach for

hospital with more limited resources. Additionally, with the rise of telemedicine, there

is an increasing need for more flexible and inexpensive imaging modalities. Therefore

a key gap addressed here is to obtain patient-specific geometries with inexpensive yet

accurate methods such as multi-view stereo (MVS).

Virtual surgery based on patient-specific geometry and material parameters would

lead to accurate prediction of stress profiles following surgery. Yet, this is not enough

to improve outcomes. In the end, the connection between an individual’s stress

map from the surgical procedures has to be matched to the same patient’s healing

process in order to dissect the exact relationship between mechanical cues and wound

healing. Animal and in vitro studies have demonstrated that excessive stress leads

to wound complications [35, 36], and very recent clinical cases with stress shielding

devices have observed for the first time that reducing the stress at a suture leads to

quantitatively less scarring [3]. This progress is currently limited to simple excision

and suturing patterns in which the stress contours are intuitive and reduction of

stress with a prestretched membrane is straightforward. At the same time, we have

a very comprehensive knowledge of the wound healing process, and of the biological

process at play in the fibrotic response due to excessive stress. Therefore, we should

be able to connect arbitrary stress contours from complicated procedures to the final

healing outcome in terms of scar properties and geometry. While this last step is not

covered in this thesis, it clearly is the next step. In this thesis, we get to the point

of creating patient-specific models of reconstructive surgery and following up on the

patients in order to establish, for the first time, a dataset that connects stress contours

to wound healing outcomes. This knowledge is the indispensable foundation for the

development of computational models of the biological process of wound healing,

and, on its own, will aid in the creation of probabilistic models that can anticipate

situations prone to complications and recognize best practices.
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An underlying thread of the gaps just outlined is the fact that any computational

model for virtual surgery will necessarily involve uncertainty in the calibration of the

model and in the prediction. For example, the high variability of skin properties

between individuals needs to be taken into account, both during the material pa-

rameter estimation task and then in the surgical planning. While the geometry of

a patient can be captured accurately, identifying optimal surgical plans for general

guidelines, or calibrating a model to become patient-specific, can only be done effi-

ciently if there is an underlying understanding of how geometry variations influence

the stresses profiles from surgery. Clearly, the biological response is also highly vari-

able across individuals, not to mention other factors, other than mechanical cues, that

ultimately determine the healing outcome. In conclusion, uncertainty quantification

and propagation is one common theme across the different specific gaps addressed in

this thesis. The different components of the thesis thus come together to address the

goal of improving the overall pipeline of reconstructive surgery planning and execution

through computational mechanics with a data-driven focus.

1.1 Overview of skin anatomy

Skin is a complex multi-layered tissue that protects us from harm and connects

us to the outside environment (Fig. 1.2). The detailed structure and fascinating

characteristics of this tissue, across multiple scales, are such that it enables its proper

function. [37]. Indeed, the epidermis, the outermost layer of the skin, is a stratified,

highly cellular tissue, and it exists in a constant state of self-renewal [38]. The basal

keratinocytes cells are at the bottom of the epidermis, and are the only cells in the

epidermis that can proliferate. As these cells divide, they get pushed up toward the

surface and differentiate along the process [39]. At the top of the epidermis there

are only dead, flat cells forming a thin shell called the stratum corneum, and these

dead cells get released to the environment continuously. The constant renewal of

the epidermis makes this layer of the skin particularly suitable to protect us against
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2. Skin as a complex composite structure

2.1. Structures of the skin

Generally, biological tissues are complex materials usually
made of different layers. Skin is one of the most important tissues
since it accounts for about 15% of the body weight, averages 1.8 m2

in surface, and has a thickness of 1.5–4 mm in the human body
[23]. There are three main types of skin: Glabrous (in palms and
soles), hairy (most of the human body) and mucocutaneous (ori-
fices) [24,12]. Apart from being a barrier that protects the body
from biological, chemical and physical insults, and maintains
homeostasis, it has other important functions (sensory, metabolic,
etc.) [23,25].

Skin has three main layers: the epidermis, the dermis and the
hypodermis, see Fig. 1. All layers have both an extracellular pro-
teinic matrix (ECM) and different cells, as well as other structures
which may be specific to each layer such as blood vessels, glands,
nerves, and hair [23]. The structure of the skin varies depending on
the location [26], with age, gender, race, illnesses, etc., [27,26,28–
30]. The volume of the ECM is considerably greater than that of
the cells [18,19,31] and accounts for about 75% the weight of the
skin.

The ECM is composed of three classes of biomolecules: struc-
tural proteins (collagen, fibrillins and elastin), specialized proteins
(fibroconectin and integrin types, which attach cells to the ECM
and several laminin types, specially in the basal lamina), and pro-
teoglycans. [23]. Proteoglycans are large molecules which contain
a core protein and glycosaminoglycan sugars (highly viscous,

hydrophilic and incompressible) like hyaluronic acid which can
take up to 1000 times its volume in water. The unstructured pro-
tein mass is frequently called ground substance or ground matrix
and accounts for 20% of the dry weight of the skin and 80% of
the volume. This ground substance is mainly responsible for the
behavior in compression and at the onset of loading in tension
[32]. Details of the structure and properties of the different pro-
teins may be found, for example in Ref. [33].

The epidermis is the outer layer of the skin with a thickness of
about 0.05 mm (eyelids) to 0.8–1.5 mm (thicker in palms and
soles), mainly composed of keratinocytes (cells producing keratin,
which is a cytoskeletal filament and protective protein present the
in skin, hair and nails) and 5% of other cells (melanocytes, Merkel
cells and Langerhans) [23], see Fig. 1. The epidermis consists of
the following strata from the surface to the contact to the dermis:
corneum, lucidum, granulosum, spinosum/squamous and basale or
germinativum [23]. The stratum basale contains small dividing
(basal, germinating) cells which push older ones upwards. This
layer also contains melanin-producing cells called melanocytes,
which give color to the skin and protect the lower layers from
harmful sun exposure, and Merkel-Ranvier cells [12] which act as
soft touch sensor [34]. The Stratum Spinosum contains more
mature keratinocytes. The name spinosum comes from the spiny
aspect of the cell-to-cell adherent bridge proteins called desmo-
somes which join cells attaching to cytoskeletal keratin [35]. Also
mainly present in this stratum, dendritic Langerhans cells attach
to the antigens in damaged skin to alert the immune system
[23]. The granulosum and lucidum layers (with 2–3 cell sublayers
each, the latter in palms and soles) contain more mature

Fig. 1. The structures of the skin.

J.M. Benítez, F.J. Montáns / Computers and Structures 190 (2017) 75–107 77

Fig. 1.2.: Structure of skin showing a complex multi-layered tissue and multi-scale
components. Skin is largely divided into three layers, epidermis, dermis, and hipo-
dermis, from outer to inner layer. Each layer is characterized by different cells and
structures. Reprinted from [37], Copyright 2017, with permission from Elsevier.

abrasion and other superficial harms. This layer is also a primary regulator of heat

and fluid exchange between the interior of our bodies and the external environment.

Our tactile sense, is also highly dependent on the epidermis healthy functioning. The

color of our skin and protection from UV radiation are additional tasks for this layer

of the skin [40,41].

Below the epidermis there is the dermis, which is the most important layer of the

skin when it comes to load-bearing tasks. The dermis is a connective soft tissue, and,

like other connective soft tissues of the human body, is primarily made out of an in-

terwoven collagen fiber network. Elastin is another important constituent, especially

for the mechanical behavior of skin at lower strains. The dermis is further classified

into uppermost and thinner layer of papillary dermis and a lower layer called retic-



8

ular dermis [39]. The mechanical behavior of skin under tension is highly nonlinear

and anisotropic, and this is a direct consequence of the tissue microstructure. The

collagen fiber network in the dermis shows a preferred orientation, and the fibers have

different degree of waviness or slack [42]. As external forces are applied, the macro-

scopic deformation of skin leads to alignment and stretching of collagen fibers at the

microscale, and this causes the tissue to show a characteristic J-shape stress-strain

curve [43–45]. Therefore, the interplay of elastin and collagen fibers enable us to have

a stretchable but highly resistant tissue that protects us from mechanical insult but

at the same time enables us to move freely and effortlessly.

Underlying dermis is the hypodermis, which mainly consists of fat cell called

adipocytes. The hypodermis performs energy storage functions, provides thermal

insulation [37], and serves also as a mechanical shock absorber [46–48].

Even though skin tissues show common characteristics across individuals, and even

across different species of mammals, there is also a relatively wide variability in the

structure and mechanical behavior. For instance, mechanical properties of skin vary

with age, anatomical location, and from person to person [49,50]. As can be expected,

this variability in tissue-level behavior is connected to a variation in the underlying

microstructure [51–54]. Changes in skin structure occur not only through aging, but

also in response to disease of injury. In this work we are particularly concerned with

the changes in skin mechanical properties after wound healing. Unfortunately, the

wound healing process leads to scar tissue rather than healthy skin. As a consequence,

this tissue is less apt to the mechanical functions it is required to do, and this can

have a high cost to the health of an individual. Pathological scarring, such as after

burns or aggressive reconstructive procedures, can lead to lack of joint mobility, or

disfigurement. We are therefore interested in the mechanics of healthy skin, including

its variability, but also of scars.



9

1.2 Review of the state-of-the-art modeling of skin

The most noticeable features of skin in terms of its mechanical form and function

are its nonlinear and anisotropic behavior. To model this, a common framework has

been to consider skin as a hyperelastic material. the assumption of near incompress-

ibility has also been deemed appropriate since the tissue is mostly composed of water

which, in a relatively short time frame, is not movable within the tissue.

Based on the aforementioned manifest features, modeling the mechanical behavior

of skin has been based on the construction of a suitable strain energy density function.

Extensive research on the constitutive model of skin can be roughly be summarized

into a classification of the different approaches down to three main classifications:

phenomenological, structural, and structurally-based phenomenological models [55].

Phenomenological model takes into account macroscopic behavior of skin with as-

sumption that skin is homogeneous material [56]. On the other hand, structural

model of skin focuses on microstructural components such as collagen fiber orienta-

tion and dispersion. Here, there is argue that structural model is also phenomeno-

logical model because only matter is scale [55]. Structurally based phenomenological

model is a result to combine structural model with phenomenological model such that

macroscopic constitutive equation is integrated with microstructural features [55]. For

example, Gasser-Ogden-Holzapfel (GOH) constitutive model [57], which generalizes

previous models [58, 59] with dispersion of collagen fiber about preferred fiber orien-

tation, is one of structurally based phenomenological models. Originally GOH model

is developed to account for behavior of artery, but it also fits skin well [60].

In reality, the behavior of skin is not entirely described with a hyperelastic frame-

work. Indeed, another noticeable characteristic of skin is viscoelasticity that means

both viscous and elastic features occur under deformation [61]. That is, mechanical

behavior of skin is time-dependent. This is because 64% of skin weight is water, and

while some fraction of this water is tightly bound to some of the structural proteins,

a major fraction is highly movable on slow-enough time scales [62]. To describe such
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viscoelastic nature of skin, Lanir [63], Shoemaker et al. [64], and Bischoff et al. [65]

and so on have developed viscoelastic constitutive model of skin [61]. In this thesis,

however, we will focus only on the mechanical response of skin in short time scales

for which a hyperelastic description is suitable.

1.3 Review of the state-of-the-art measuring skin mechanical behavior

Following the understanding on skin’s mechanical behavior, knowing skin prop-

erty is of practical importance in reconstructive surgery [66], dermatology [67, 68],

and cosmetic field [69] because surgery scheme and medical therapy can be personal-

ized to optimize outcome. Like common mechanical materials, skin as a deformable

material can be tested using conventional mechanical test. As the aforementioned, a

lot of test methods have been developed to measure mechanical property of skin such

as suction, uniaxial or biaxial, torsion, and indentation tests and so forth [45]. Unlike

common mechanical materials, on the other hand, skin as a living material contains

high variation in terms of material properties. Even for same subject, different me-

chanical properties are observed with respect to body region [70]. In addition, skin is

sensitive to experimental condition such as hydration and temperature [71]. During

test, therefore, experimental condition should be well controlled to obtain consistent

experimental result.

More sophisticated approach has been carried out to investigate each skin layer of

statum corneum [71], epidermis [72], dermis [73], and hypodermis [74], respectively.

FEM has also been utilized to inversely derive coefficients in constitutive model which

not only depicts experimental results but also results in outcome of finite element

analysis. Suction [75] and indentation test [76] are incorporated with FEM to fit

experimental result with FEM result.
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1.4 Review of surgical simulators

Extension of computational mechanics to biology and medicine has been well

achieved since several decades. Through the continuum scale, traditional approach is

FEM, and which has elucidated physical phenomenon in biological system. For exam-

ple, most biological systems entail complex geometry and boundary condition (artery

[77], brain [78], heart [79], skin [80]), multi-physics governing equations [81–83], and

intrinsic in vivo state [84], but those difficulties have been resolved with acceptable

accuracy as well as solid explanation. Beyond the fundamental understanding on the

behavior of biological system, demands on clinical application also arise to benefit

from the FEM in order to yield optimal outcome of surgery. Surgical procedure is

individually investigated and outcomes from FEM at each surgical stage help a sur-

geon design a better surgical plan or anticipate suboptimal outcome. In this response,

surgical simulation ideally aims for being real-time and realistic visual with haptic

feedback as well as accurate enough. To do so, computational as well as mechanical

point of view should be delivered over clinical and biological aspect.

First of all, soft tissue specifically shows complicated behavior to the external force.

Unlike classic materials like steel, soft tissue characterizes nonlinear behavior such

as J-shaped stress-strain response or time-dependent relaxation, which is generally

described as hyperelastic or hyper-viscoelastic models, respectively [85]. The initial

approach, on the other hand, has started with linear constitutive model such that

behavior of tissue is assumed as infinitesimal deformation and linear response in

order to reduce computational work [86–88]. But more advances have been achieved

with hyperelastic or hyper-viscoelastic constitutive models and finite deformation,

e.g., reconstructive surgery [14,89–91].

When we also consider an individualized treatment for every patient [32], another

requirement to improve surgical simulation is to acquire the accurate geometry like

patient-specific approach [31] rather than the simplified model [92]. Taking advantage

of graphical technology such as MRI [33] or CT scan [34], patient-specific geometry
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can be achieved to implement FEM. However, the complexity of geometry causes non-

trivial effort to create hexahedral dominant mesh [93]. To circumvent this hardship,

most commonly used approach is to increase the density of mesh using tetrahedral

mesh [94] or technically more elegant method is to employ meshless Total Lagrangian

explicit dynamics algorithm when accuracy of individual displacements or forces is

of less importance than that of overall reaction displacements or forces [95]. High

computational cost, however, is inevitable for more accurate geometry. In this re-

gard, nonlinear FEM has been implemented with graphics processing unit (GPU) to

reduce computation time and make surgical simulation possible in terms of real-time

utilization [96].

1.5 Overview of the dissertation

The main motivation behind this dissertation is to improve reconstructive surgery

based on computational modeling of skin mechanics. As shown in Fig. 1.3, each

stage of surgery has basic scientific gaps regarding the role of mechanics. Chapter

Preoperative

planning

Surgery Postoperative

scarring

Computational mechanics in surgery

Improving

Reconstructive

surgery

𝐹 =
𝜕𝐱

𝜕𝐗

Fig. 1.3.: Pipeline on how to improve reconstructive surgery through computational
mechanics framework from preoperative planning to postoperative scarring: The
schematic accounts for main stream of this dissertation. At preoperative stage, virtual
surgery simulation requires patient-specific geometry and skin property to obtain re-
liable stress contour. During surgery, possible any uncertainty factors are thoroughly
considered, and corresponding calculation of strain and stress guides more robust
choice on reconstructive surgery in terms of size of defect, age and gender, and fiber
orientation. At postoperative step, individualized stress map is projected to the cor-
responding patient’s surgery region to take into consideration correlation between
stress and wound healing process.
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2 aims for improving skin expansion protocol based on quantitative study of skin

growth using porcine experiment and its kinematics analysis. Chapter 2 has been

published in Journal of the Mechanical Behavior of Biomedical Materials. Reprinted

from [97], Copyright 2018, with permission from Elsevier. This study demonstrates

that skin in vivo is not stress free, and precisely quantifies how this stress-free state

changes in tissue expansion. Chapter 3 is also focused on tissue expansion. Based

on the quantification of the growth and pre-strain fields of skin seen in the ani-

mal model and the knowledge that the observed variablity is also a feature of tissue

expansion in humans, Chapter 3 presents a novel methodology to account for un-

certainty of mechanical and biological responses in tissue expansion. Chapter 3 has

been published as a journal paper in Computer Methods in Applied Mechanics and

Engineering. Reprinted from [98], Copyright 2020, with permission from Elsevier.

Chapter 4 investigates the characteristics of incompatibility of growing tissues and

the connection to residual stress. Representative growth scenarios as well as actual

biomedical applications are scrutinized in order to connect incompatibility and its

residual stress, which constitute a foundation to understand stress-free configuration

in biological tissues indispensable for accurate prediction of stress contours upon re-

constructive surgery. Chapter 4 has been submitted and in revision. In Chapter 5,

we move away from skin growth and the question of the stress-free configuration,

and we focus on the inverse problem to obtain mechanical properties of skin from in

vivo suction measurements. The computational modeling of suction tests takes into

account anisotropic nature of skin, as well as its nonlinear hyperelastic response. The

solution of the inverse problem is built through a Bayesian framework, which can

provide us with an insight on epistemic as well as aleatory uncertainty. The other

ingredient for the preoperative planning simulations is to be easily able to create ac-

curate patient-specific models. Chapter 6 thus focuses on the use of computer vision

technologies to enable inexpensive geometry acquisition to feed into a personalized

finite element model. Chapter 6 has been published in Journal of Biomechanics.

Reprinted from [99], Copyright 2018, with permission from Elsevier. Chapter 7 also
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deals with patient-specific models of reconstructive surgery. In Chapter 7, we in-

vestigate rotation flaps in the scalp. Chapter 7 has been submitted and in revision.

Chapter 8 then focuses on the inherent challenge of creating virtual surgery models

that can account for uncertainty in the material parameters. The propagation of un-

certainty in nonlinear, computationally expensive physics-based models, such as the

ones needed for preoperative planning, requires the development of reduced order and

surrogate models for these applications. Chapter 8 has been published as a journal

paper in Biomechanics and Modeling in Mechanobiology. Reprinted by permission

from [100], Springer Nature, Copyright 2018. In Chapter 9, we take a step back from

the patient-specific cases and we instead tackle a general investigation of the stress

signatures of the most common flap designs. Continuing the theme from the previous

chapter, in Chapter 9, we use reduced order and surrogate models to understand how

different lesion sizes and changing mechanical properties dictate the corresponding

stress contour on the skin. Chapter 9 has been published in Journal of the Mechanics

and Physics of Solids. Reprinted from [101], Copyright 2019, with permission from

Elsevier. Finally, in Chapter 10, we focus on optimization of each local flap design

discussed in the previous chapter. Chapter 10 has been submitted for publication.
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2. IMPROVING TISSUE EXPANSION PROTOCOLS

THROUGH COMPUTATIONAL MODELING

Abstract: Tissue expansion is a common technique in reconstructive surgery used to

grow skin in vivo for correction of large defects. Despite its popularity, there is a lack

of quantitative understanding of how stretch leads to growth of new skin. This has

resulted in several arbitrary expansion protocols that rely on the surgeon’s personal

training and experience rather than on accurate predictive models. For example,

choosing between slow or rapid expansion, or small or large inflation volumes remains

controversial. Here we explore four tissue expansion protocols by systematically vary-

ing the inflation volume and the protocol duration in a porcine model. The quantita-

tive analysis combines three-dimensional photography, isogeometric kinematics, and

finite growth theory. Strikingly, all four protocols generate similar peak stretches,

but different growth patterns: Smaller filling volumes of 30 ml per inflation did not

result in notable expander-induced growth neither for the short nor for the long pro-

tocol; larger filling volumes of 60 ml per inflation trigger skin adaptation, with larger

expander-induced growth in regions of larger stretch, and more expander-induced

growth for the 14-day compared to the 10-day expansion protocol. Our results sug-

gest that expander-induced growth is not triggered by the local stretch alone. While

stretch is clearly a driver for growth, the local stretch at a given point is not enough

to predict the expander-induced growth at that location. From a clinical perspective,

our study suggests that longer expansion protocols are needed to ensure sufficient

growth of sizable skin patches.
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2.1 Motivation

Tissue expansion is a popular technique in reconstructive surgery to grow skin in

vivo in order to correct large cutaneous defects [102]. This technique was introduced

in 1957 by Neumann [103] and has since become ubiquitous to reconstruct breasts

after mastectomy, to resurface giant nevi, and to treat burn wounds [104–106]. Tis-

sue expansion relies on the unique capacity of living tissue to adapt to mechanical

loading through growth and remodeling [107,108]. Yet, despite the popularity of this

procedure, we lack a quantitative understanding of how exactly deformation leads to

the growth of new tissue. Not surprisingly, numerous arbitrary protocols have been

proposed, depending on the surgeon’s experience, training, and personal preference.

In tissue expansion, the surgeon subcutaneously inserts a medical device resem-

bling a balloon called the tissue expander. The device is filled with saline solution

at different time points over the course of several weeks. At the end of the infla-

tion process, the expanders are removed and the skin stays as a dome-like structure

revealing growth or, equivalently, permanent area changes. In the clinical setting,

the surgeon has two main variables to control the tissue expansion process: inflation

timing and inflation volume. The optimal design of a skin expansion protocol re-

mains controversial, while some physicians advocate for rapid expansion others favor

a longer protocol; some propose to inflate the expander to a larger volume while oth-

ers prefer smaller amounts of fluid at each inflation step [7, 104, 109, 110]. Here we

explore four different protocols of expansion in a porcine model to compare the effect

of short or long protocol times, and small or large inflation volumes on skin growth

and remodeling.

Another important question when new skin is created in response to stretch is

whether or not there are changes in the tissue microstructure that accompany the

growth process. While it is apparent that the new tissue looks and feels very similar to

the original skin, some remodeling trends have been reported at the microscopic scale

[111]. The epidermis, the top layer of skin that is mainly composed of keratinocytes,
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generally becomes thicker following tissue expansion [112]. In the dermis, the bottom

layer of skin that is primarily made up of collagen, the fiber morphology becomes

more disorganized [113]. Here we explore the effect of the four different expansion

protocols on the skin microstructure by analyzing histological images.

Characterizing the mechanics of tissue expansion has the advantage that skin is a

thin membrane exposed to the outside environment. Thus, imaging systems can be

developed to study skin mechanics non-invasively in vivo over long periods of time.

Here we use three-dimensional photography to capture the geometry of skin in the

operating room. Three-dimensional photography based on stereo vision has made

significant progress in the last decade. It is now possible to use handheld cameras

to capture three-dimensional surfaces with a minimal experimental setup and high

accuracy [114]. The advantage of such system is that noninvasive measurements can

easily be performed in clinical settings such as the operating room, either for an

animal model as we show here, or for translation of this protocol to human patients,

which we intend to do in the near future. The work presented here closely follows our

previous work on skin expansion biomechanics [115–117]. In our previous studies,

we used multi-view stereo to capture three-dimensional geometries. Here we use

three-dimensional photography instead of multi-view stereo, but continue to use the

same methodology for the mechanical analysis as before. Our approach combines

isogeometric kinematics and the continuum theory of finite growth. In addition to

our previous methodology, here we collect punch biopsies at the end of the protocol for

further histological analysis. The topology of the collagen network and the geometry

of the epidermis are crucial for skin mechanical and frictional behavior [55,118–120].

This auxiliary analysis allows us to study, for the first time, how growth of skin at

the tissue scale is related to microstructure changes.

Isogeometric analysis relies on B-spline parameterizations of the geometry [121].

Isogeometric analysis is extremely well-suited for studying skin mechanics since B-

spline basis functions can be constructed with high continuity, enabling thin shell de-

scriptions [122] and a smooth representation of the geometry with a relatively coarse



18

mesh [116]. Furthermore, we express all surfaces in terms of the same parameter

domain, such that computation of the deformation gradient between any two config-

urations is easily achieved with curvilinear coordinates [115]. To estimate the amount

of total growth, we assume that the total deformation is a combination of prestrain,

elastic deformation, and total growth, through a multiplicative split of the deforma-

tion gradient [123]. The underlying finite growth theory has become a well-established

framework to describe the mechanical adaptation of biological tissues [124].

The work presented here sheds new light on the impact of inflation volume and

protocol duration on the resulting skin deformation and growth patterns and further

establishes new technologies that allow us to quantify skin growth and remodeling in

an in vivo animal model over long periods of time.

2.2 Methods

2.2.1 Porcine model of skin expansion

Four different models of expansion are illustrated in Fig. 2.1. The protocols

mimic different clinical expansion strategies. The effect of small versus large inflation

volumes is studied by injecting either 30 ml or 60 ml at each inflation step. For the

long expansion protocol, the total duration of the experiment is 14 days, with two

inflation steps 7 days apart, for the shorter expansion protocol, the second inflation

step is only 4 days prior to the end of the experiment resulting in a 10-day protocol.

The experimental methodology used in this study closely follows our prior work

with the exception of using three-dimensional photography instead of multi-view

stereo, and the additional collection of punch biopsies for histology at the end of

the process [115–117]. Briefly, animals are provided with food and water ad libitum

per veterinary recommendations throughout the study. All animals undergo grid tat-

tooing procedure at age 6-7 weeks, with tissue expander placement surgery performed

1 week after the tattooing procedure. Four square grids are tattooed on the back of

an animal. For either the front or the back grids, one side is used for expansion while
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Fig. 2.1.: The four different experimental protocols for porcine models of skin expan-
sion. Model 1 is 10-day expansion with small inflation volumes, model 2 is 10-day
expansion with large volumes, model 3 is 14-day expansion with small volumes, and
model 4 is 14-day protocol with large volumes. A tattooed grid defines the area of
interest and allows for deformation tracking. Three-dimensional photos are taken at
every inflation step, before and after inflation. At the end of the protocol, animals
are sacrificed and grids excised. The deformations are analyzed using isogeometric
analysis within the finite growth framework in which the deformation is a composi-
tion of prestrain Fp, deformation induced by expansion F, elastic deformation after
expansion Fe, and total growth Fg. Additionally, natural growth Fgn is measured in
the control patches in order to isolate the expander-induced growth. Punch biopsies
are collected for the control and expanded grids to quantify changes in microstructure
by analyzing histological slides.

the contralateral side serves as control. To study the four different protocols, we used

two animals, one for the small and one for the large volume protocols.

On the expander side, a two-stage rectangular tissue expander with 120 ml filling

capacity (PMT Corporation, catalogue number #3610-06-02, Chanhassen, MN) is

inserted subcutaneously underneath the grid and the incisions are sutured and left

to heal. The tissue expanders are placed in the plane immediately superficial to the
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overlying muscle fascia, i.e., between muscle fascia and subcutaneous fat. This is

the same plane in which tissue expanders are inserted clinically in humans. Once

the animal has fully recovered from the expander placement surgery, the inflation

protocol begins. At each inflation step, we use a syringe to inject the desired amount

of saline solution into the expander through a remote inflation port.

To capture the geometry, we take three-dimensional photos immediately before

and after each inflation step. We use a handheld commercial system (Vectra H1,

Canfield, New Jersey). At the end of the tissue expansion protocol, the animals are

sacrificed. Three-dimensional photos of the grids are taken on that day, first in vivo

and then ex vivo, after the entire patch has been excised. Following three-dimensional

photo acquisition ex vivo, punch biopsies are collected. For the control side a single

biopsy is needed, while for the expanded size we harvest three samples, one at the apex

of the expander, one at the periphery of the expander, and one at an intermediate

location between the apex and the periphery as illustrated in Fig. 2.1. Model 1 is the

10-day expansion protocol with small inflation volumes, model 2 is 10-day expansion

with large volumes, model 3 is the long, 14-day expansion with small volumes, and

model 4 is the short expansion with large volumes.

2.2.2 Isogeometric analysis and finite growth theory

Isogeometric analysis relies on B-spline surface reconstruction [125]. We start

with the same tattooed grid for all the skin patches and assign the same initial

parameter space, i.e., same mesh, to every patch at all time points. B-splines can

easily reconstruct smooth surfaces due to the availability of high order basis functions,

even with a coarse set of control points [122]. In our case, the grids provide a set

of 121 material points that are fitted with quadratic B-splines using open source

spline libraries (SINTEF, Norway). The parameter space is chosen to be (ξ, η) ∈

[0, 10] × [0, 10]. Hence, for a given grid at a specific point in time, the surface S(ξ, η)

is a mapping from the parameter space to the physical R3 space. Given a pair of
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surfaces, we compute the deformation gradient using the corresponding metric tensors

associated with the surface embeddings. For example, given So as reference and S f

as the current surface, respectively, we construct the covariant base vectors

Go
1 =

∂So

∂ξ
and Go

2 =
∂So

∂η
, (2.1)

for the reference surface, and

G
f
1 =

∂S f

∂ξ
and G

f
2 =

∂S f

∂η
, (2.2)

for the current surface. Such base vectors span only the surface tangent space and

we complement them with the surface normals

Go
3 =

Go
1 ×Go

2

| |Go
1 ×Go

2 | |
and G

f
3 =

G
f
1 ×G

f
2

| |G f
1 ×G

f
2 | |

. (2.3)

The contravariant base vectors are defined via the identity Gi · G j = δ
j
i . The

deformation gradient is

F = Go
i ⊗ G f j , (2.4)

where the summation convention was used.

To account for finite volumetric growth, we multiplicatively splits the deformation

gradient into total growth and elastic contributions, Fg and Fe [126]. Here, the total

deformation gradient of the skin surface captures both, the in vivo expansion process

F and the amount of prestrain Fp [127]. The determinant of the deformation gradient

obeys the same split. In our case, the determinant of the deformation gradient is

equivalent to the area change ϑ,

FFp = FeFg and ϑϑp = ϑeϑg . (2.5)
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The tensors F and Fe are obtained from the expanded patch whereas Fp is cal-

culated from the control patch by mapping the ex vivo control surface to the in vivo

control surface. We can then calculate the total growth tensor, Fg = Fe−1FFp. The

total growth tensor can further be decomposed into two contributions, naturally-

induced growth Fgn and expansion-induced growth Fge,

Fg = FgeFgn and ϑg = ϑgeϑgn . (2.6)

In addition to changes in area, we compute changes in length along the two direc-

tions of interest. For any of the skin patches at day 0, the vector G1 corresponds to

the longitudinal axis of the animal, while the vector G2 is aligned with the transverse

direction. These vectors, however, are not necessarily of unit length. We then define

the unit vectors

E1 =
G1

| |G1 | |
and E2 =

G2

| |G2 | |
. (2.7)

The deformations due to the expansion process along the two directions of interest

are the stretches

λ1 =
√

E>1 CE1 and λ2 =
√

E>2 CE2 , (2.8)

where C = F>F is the right Cauchy-Green deformation tensor. We further assume

that prestrain and total growth leave the two directions unchanged,

Fp = λ
p
1 E1 ⊗ E1 + λ

p
2 E2 ⊗ E2

Fg = λ
g
1 E1 ⊗ E1 + λ

g
2 E2 ⊗ E2 ,

(2.9)

such that a multiplicative split analogous to Eq. (2.5) is possible for the longitudinal

and transverse deformations.
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2.2.3 Histology analysis

Following excision of the skin patches, we collect punch biopsies at different lo-

cations as indicated in Fig. 2.1. For the control patch, only one sample is collected

whereas for the expanded grids, three points are marked with different colors before

excision and biopsies are taken ex vivo: at the apex (red), at an intermediate point

(blue), and at the periphery of the expanded area (black). We use pentachrome

staining to visualize the different constituents of skin. In this study we are interested

in the thickness of the epidermis and the collagen network morphology. Histological

slides are processed with the OrientationJ plugin in imageJ [128] to quantify col-

lagen orientation in the dermis [129]. For a given histological slide, we compute a

coherency image which contains local alignment information normalized between 0

and 1. Briefly, for a given image I(x, y), we compute the gradients Ix = ∂I/∂x and

Iy = ∂I/∂y [129]. From these vector fields, we compute the tensor field J,

J =
©«
〈Ix, Ix〉w 〈Ix, Iy〉w
〈Iy, Ix〉w 〈Iy,Yy〉w

ª®¬ , (2.10)

where 〈 f , g〉w =
∫
w

f · g dA denotes the inner product and w(x, y) is a Gaussian

weighting function such that the inner product 〈 f , g〉w serves as a smoothing filter

with a kernel w. Coherency is then defined as

C(x, y) = λmax − λmin

λmax + λmin
, (2.11)

with λmax and λmin the largest and smallest eigenvalues of J. We report the average of

the coherency image. OrientationJ also outputs a distribution of the orientations over

the entire image. We fit a Gaussian to the fiber distribution and define the standard

deviation of such distribution as dispersion. Finally, we measure the thickness of

the epidermis using imageJ with a novel tool proposed recently by our groups and

described in detail in a separate publication [130].
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2.3 Results

2.3.1 Total deformation

Fig. 2.1 shows the three-dimensional photographs obtained at each inflation step

and Fig. 2.2 depicts the contour plots of the area change ϑ over the expanded three-

dimensional geometries. As expected and in agreement with our previous studies

[116,131], strains are greater at the apex of the expander compared to the periphery.

This can be appreciated also in Fig. 2.2, last column, which shows the deformation

for specific points of the expanded patch. The red, blue, and black curves correspond

to points at the apex, the middle, and the periphery respectively. The same expander

was used in all models, however, when the expanders are not yet filled to their capacity,

their shape can show some variation as seen in Fig. 2.1. Additionally, two of the

expanders moved during the protocol. In model 1, the expander migrated anteriorly

by approximately 2 cm. In model 4, the expander migrated posteriorly 1 cm, and

ventrally 2 cm. Despite these displacements, the expanders all remained within the

tattoo grid at sacrifice. Over the two weeks of the experiment, the overall trend is an

increase in deformation at all points. Not all deformation is expander-induced strain.

Some deformation is related to the natural growth of the animal measured on the

control patches, see Tables 2.1 and 2.2. Greater deformation is consistently seen for

the apex point (red) in all expansion models. Surprisingly, the large volume protocols

result in similar peak strain as the small volume protocols, see Table 2.2, first column.

However, in the large volume models, the blue and black points show progressively

less deformation, with ϑ ∈ [1.1, 2] at the end time point, whereas in the small volume

protocols the deformation is similar for the three points of interest, ϑ ∈ [1.5, 2].

Fig. 2.3 shows the stretches λ1 = | |FE1 | |2 and λ2 = | |FE2 | |2 in the directions

of interest. Recall that E1 is aligned with the longitudinal axis of the animal at

the beginning of the protocol and E2 is a unit vector field in the transverse orien-

tation. Similarly to what is seen in the total area plots, the stretches for the two

principal directions show greater deformation in the apex and less in the periphery
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Fig. 2.2.: Area change for the total deformation ϑ = det(F) is calculated with respect
to the initial in vivo state. The rows show the different inflation protocols: The
last column shows the deformation for specific points of interest: The red curve
corresponds to a point at the apex of the expander, the black curve is a point at
the periphery, and the blue curve is an intermediate point. The overall trend is an
increase in deformation, with the apex point (red) showing the greatest deformation
followed by the intermediate (blue) and the periphery (black) points. Peak stretches
are similar across all protocols.

of the expanded area. Another trend that we have consistently observed in our pre-

vious studies is that stretches in the longitudinal axis are greater than transverse

deformations [115].
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Table 2.1.: Average values and standard deviations for total deformation ϑ, elastic
deformation ϑe, prestrain ϑp, total growth ϑg, and natural growth ϑgn calculated over
the entire grid for each of the inflation models. Standard deviation over a skin patch
is large for the components of the deformation directly affected by the expansion
process. Natural growth, measured on the control patches, is a more homogeneous
field for all models and hence shows lower standard deviation.

Model Timing Volume
ϑ [-] ϑe [-] ϑp [-] ϑg [-] ϑgn [-]

avg std avg std avg std avg std avg std
Model 1 Short Small 1.47 0.23 1.20 0.19 1.22 0.17 1.49 0.20 1.38 0.10
Model 2 Short Large 1.35 0.30 1.24 0.21 1.15 0.11 1.24 0.17 1.28 0.13
Model 3 Long Small 1.36 0.18 1.18 0.22 1.30 0.17 1.39 0.19 1.37 0.11
Model 4 Long Large 1.31 0.28 1.16 0.15 1.10 0.11 1.23 0.21 1.29 0.13

Table 2.2.: Total deformation ϑ, elastic deformation ϑe, prestrain ϑp, total growth ϑg,
and natural growth ϑgn are calculated for the three points of interest. Red (apex of
the expander), Blue (intermediate point between the apex and the periphery), Black
(periphery of the expander). The red point was consistently deformed the greatest in
all models and the peak value was close for all cases (first column). Total growth in
the small volume cases was lower at the apex compared to the large volume protocols
regardless of whether the inflation was over 10 or 14 days. In contrast, total growth
was higher in the blue and black points in the small volume models compared to the
larger volumes.

Model Points ϑ [-] ϑe [-] ϑp [-] ϑg [-] ϑgn [-]

Model 1
Red 2.02 1.64 1.17 1.45 1.34
Blue 1.95 1.47 1.19 1.58 1.36
Black 1.60 1.22 1.06 1.39 1.30

Model 2
Red 1.99 1.65 1.27 1.54 1.27
Blue 1.64 1.58 1.19 1.23 1.23
Black 1.17 1.16 1.17 1.19 1.39

Model 3
Red 1.80 1.60 1.18 1.32 1.30
Blue 1.72 1.60 1.16 1.25 1.33
Black 1.53 1.31 1.31 1.53 1.44

Model 4
Red 1.97 1.45 1.00 1.36 1.07
Blue 1.61 1.26 1.05 1.34 1.21
Black 1.23 1.06 1.04 1.22 1.47
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Fig. 2.3.: Total stretch along the two directions of interest. λ1 is the stretch in the
longitudinal axis E1 of the animal, while λ2 is the stretch in the transverse direction
E2. The columns show the contours of λ1 and λ2 for the different inflation protocols.
The vector fields associated to the current configuration, FE1 and FE2 where F is
deformation gradient tensor, are also shown.

2.3.2 Elastic deformation, prestrain, and growth

At the end of the expansion protocol, excision of the expanded patch reveals the

elastic deformation Fe while excision of the control patch allows quantification of

the prestrain Fp. Then, using F from the previous section and employing Eq. (2.5)

we calculate the total growth Fg. We further use the control patch to measure the

natural growth Fgn. Fig. 2.4 shows the individual components of the area change

for the different experimental models. The elastic area change ϑe follows the pattern

of the total area change ϑ: Upon excision, the skin retracts the most in regions of

highest in vivo area change. Prestrain fields ϑp are measured in the control patches,

thus, they are not directly affected by the expansion procedure and have a less defined

spatial pattern. There is some variation between the different animals. For model 1

and model 3, the prestrain is greater towards the ventral side of the animal whereas

for models 2 and 4, the prestrain is overall lower and more uniform, see Table 2.1.
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Fig. 2.4.: Contour plots over the parameter space for elastic deformation ϑe, prestrain
ϑp, total growth ϑg, and natural growth ϑgn. The elastic deformation reflects the
pattern of the total deformation. Prestrain fields are calculated based on the control
patch and not affected by the expansion process, nonetheless some spatial variation
is observed as well as inter-specimen variability. Total growth is a combination of
natural and expander induced growth. The natural growth fields are uniform in all
cases.

The total growth for model 1 and model 3 is larger compared to models 2 and 4. For

all protocols, the natural growth fields, measured on the control patches, have the

lowest spatial variation among all the components of the deformation. This is also

captured in the standard deviation values summarized in Table 2.1.

Growth attributed to the expansion process alone is the key component of de-

formation for this study. This deformation field, Fge, can be computed using Eq.

(2.6) based on the total growth and natural growth fields. Since the natural growth
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fields have the lowest spatial variation, the heterogenous patterns of the total growth

fields are due to the expansion-induced growth. However, most of the total growth

can be attributed to the natural growth of the animals. In other words, the total

growth fields, measured in the expanded patches, have to be normalized by the natu-

ral growth seen in the control patches. The total growth field is always greater than

1, indicating that skin increases its area for all expansion protocols. However, as

seen in the control patches, some growth would occur naturally even in the absence

of an expander. The expander-induced growth field then captures the area changes

with respect to the naturally grown skin, isolating the contribution of the expansion

process. The contours corresponding to the expander-induced growth show that for

the larger filling volumes, in model 2 and model 4, zones under larger deformation

show larger growth, whereas for the small volume models there is no clear spatial

pattern with relation to the expander placement, see Fig. 2.5.

For model 1 and model 3, which were inflated with 30 ml at each inflation step, the

expander-induced growth at the points of maximum deformation (red curves in Fig.

2.2) is only 8% and 2%, respectively, see Table 2.3. In contrast, for model 2 and model

4, with 60 ml inflation steps, the apex point reaches a similar deformation as seen in

model 1 and model 3, but in this case, expander-induced growth was as large as 22%

and 27%. For the small volume protocols, models 1 and 3, for which the intermediate

and periphery points show similar deformation history compared to the apical point,

the expander-induced growth is also within a narrow range. For the large volume

protocols, models 2 and 4, where the three points of interest show markedly different

deformation history, the expander-induced growth also shows notable variation. As

just reported, the apical point showed the greatest in vivo deformation and greatest

expander-induced growth in models 2 and 4. The points between the apex and the

periphery show intermediate values of deformation and also modest expander-induced

growth. The periphery points were deformed the least in model 2 and model 4, and

show negative expander-induced growth (ϑge < 1), i.e., the skin at these locations

shrinks compared to the naturally grown skin. Calculating the components of the
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Fig. 2.5.: Contour plots over the parameter space for total in vivo deformation ϑ =
det(F), and expander-induced area growth ϑge = det(Fge), as well as the split in the
two directions of interest, λ1 = | |FE1 | |2 and λ2 = | |FE2 | |2 for the total deformation,
and λ

ge
1 = | |F

geE1 | |2 and λ
ge
2 = | |F

geE2 | |2 for the expander-induced growth. The large
volume protocols (models 2 and 4) show greater expander-induced growth at the
apex of the expander which corresponds to the regions of higher total deformation.
The small volume models do not show a well-defined spatial trend. Calculating the
components of this growth field on the two directions of interest shows that the
longitudinal direction E1 grows more in response to stretch compared to the transverse
orientation.

expansion-induced growth λ
ge
1 and λ

ge
1 in the two directions of interest reveals a

similar trend compared to the area changes. The longitudinal axis of the animal,

which experiences greater deformations, also presents higher growth values in that

direction.
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Table 2.3.: Area growth attributed to the expansion process alone, ϑge, and split in
the two orientations of interest λ

ge
1 and λ

ge
2 . Values are calculated for the three points

of interest: Red (apex of the expander), Blue (intermediate point between the apex
and the periphery), Black (periphery of the expander). The red point, which was
consistently deformed the greatest in all models, shows greater expansion-induced
growth for the large volume models but not for the small volume ones. Expander-
induced growth occurs primarily in the longitudinal axis of the animal.

Model Points ϑge [-] λ
ge
1 [-] λ

ge
2 [-]

Model 1
Red 1.08 0.99 1.07
Blue 1.16 1.10 1.06
Black 1.07 1.04 1.03

Model 2
Red 1.22 1.25 0.99
Blue 1.00 1.08 0.94
Black 0.85 0.90 0.95

Model 3
Red 1.02 1.12 0.91
Blue 0.94 1.00 0.93
Black 1.06 1.02 1.06

Model 4
Red 1.27 1.19 1.08
Blue 1.11 1.06 1.06
Black 0.83 0.90 0.92

2.3.3 Changes in tissue microstructure

The incision for expander placement was made 2 cm away from the expander grid

periphery; therefore, the area of expansion was remote from areas of the skin surgical

scar. However, due to the natural foreign body response, a collagen capsule always

forms around the tissue expander. This is observed clinically in humans as well. These

capsules become firmer and thicker if there is a secondary insult such as radiation

or infection. There was no infection in these animals and the peri-prosthetic capsule

was soft in all cases. Fig. 2.6 shows sample histological images representative of the

expansion models. These images correspond to the apex point which was subjected

to the greatest deformation and showed the highest expansion-induced growth. Table

2.4 summarizes the results from the histological analysis. The epidermal thickness

increased in the expanded patches compared to the controls, which is evident from

looking at the images with the naked eye and then confirmed with the measurements.
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Fig. 2.6.: Pentachrome-stained histological slides corresponding to the apex point of
the different models as well as a representative control. Collagen is visible in orange
while cells are stained in purple. As expected, the epidermis, the top layer of the skin
primarily made out of keratinocyte cells, thickens upon expansion (see also Table 2.4).
The dermis is divided into two sublayers, the papillary dermis is immediately below
the epidermis and the reticular dermis is underneath the papillary layer. Collagen
bundles in the control skin appear thicker compared to the expansion protocols but
no trend could be identified (see Table 2.4).

Results from the OrientationJ plugin did not show clear differences between expanded

skin and controls. While in some cases the collagen network in the control case is

thicker and more organized than the expanded patches, this is not true for all the

models. In Fig. 2.6, the dermis is split into two sublayers. The papillary dermis

is the top sublayer, just below the epidermis. The reticular dermis is the bottom

sublayer. For the papillary dermis, coherency values are similar across all models and

controls. The reticular coherency is slightly higher in the control cases, particularly in

the 10-day expansion of model 1 and model 2. Interestingly, the papillary coherency

is greater than the reticular coherency for both expanded skin and controls. The
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dispersion of the fiber orientation does not provide any clear difference between the

expansion protocols and the controls. Nonetheless, it is clear that the papillary dermis

is more organized, and thus has a lower dispersion of the fiber orientation, compared

to the reticular dermis in both expanded skin and controls.

2.4 Discussion

Tissue expansion is a popular technique to grow skin in situ; yet, the parameters

that drive this procedure remain poorly understood. This study was particularly

motivated by the lack of consensus regarding the optimal volume and timing of infla-

tion [104, 132, 133]. Quantitative tools to predict the effects of the different process

parameters is an important step towards improving efficiency and making the tech-

nology more applicable. Equipped with an innovative experimental design, we are

able to characterize the mechanics of small or large inflation volumes for short or

long inflation protocols. Our method is based on three-dimensional photography,

isogeometric kinematics, and finite growth theory.

Our results confirmed previous experimental and computational results with greater

deformation at the apex of the expander compared to the periphery [115, 116]. In-

terestingly, the maximum deformation was similar in response to all four protocols

regardless of the amount of fluid in each inflation step. There are several possi-

ble explanations for this non-intuitive observation. The total in vivo deformation is

a combination of elastic deformation, natural growth, and expander-induced growth.

Natural growth is measured in the control skin and not directly affected by the expan-

sion process; however, it does vary from one animal to another. Therefore, comparing

the total in vivo deformation between animals ignores this source of variation. In fact,

in the small volume experiments, the animals showed greater natural growth, which

could help explain why the peak values of deformation were similar across all proto-

cols. It is also possible that the supraphysiological growth at the expanded sites could

lead to systemic changes affecting natural growth on the rest of the animal, including
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skin in the control patches. Our previous work [115, 116] together with this study

confirms that natural growth of the animals is on the order of 1 to 2% per day. While

our previous protocols consisted of different inflation volumes and time points of in-

flation, we previously reported that the deformation at day 15, at a volume of 150 ml,

was 1.43, similar to the values reported here. Prestrain is also measured in the control

patches and, thus, not directly affected by the expansion process. However, there is

also some variability in prestrain between animals independently of the expansion

protocols. In the experiments reported here, average values of prestrain for model 1

and model 3 are within the previously reported ranges from 1.24 to 1.44. Prestrains

for model 2 and model 4, however, are lower in this study, 1.10 and 1.15. Even in the

presence of some variability, our data aligns with our previous observations.

For all four models, the average value of expander-induced growth was close to

one, indicating little to no growth with respect to the natural growth field. This

finding is not entirely surprising based on our previous work. We have reported

expansion-induced growth of 1.54 for a 37-day expansion protocol [115] and 1.17 and

1.10 for two different 21-day protocols [116]. It is possible that 14 days is not long

enough to capture significant amount of expander-induced growth over entire skin

patches. However, our local contours reveal that some regions do indeed grow. Fo-

cusing on the apex, which was subjected to the largest deformation, we observe that

for the small volume model 1 and model 3, the expander-induced growth was smaller

compared to the large volume model 2 and model 4. This is important because

for the apical points the elastic and total deformations were similar, suggesting that

expander-induced growth may not just be a local effect. On the other hand, the inter-

mediate and periphery points in the small volume experiments showed similar values

of total deformation as the apex, and similar values of expander-induced growth. For

the large volume experiments, the intermediate and periphery points showed pro-

gressively less deformation compared to the apex, and also less expander-induced

growth. These findings support that the deformation pattern for a given patch is

indeed related to the expander-induced growth field. One possibility is that the dif-
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ference in the expander-induced growth fields between the small and large volume

experiments is only attributed to animal variability. However, in light of our previous

work [115,116], and also current understanding of skin mechanobiology [134–136], we

hypothesize that the expander-induced growth field is a function of the spatial pattern

of deformation but not just the deformation at a local point. In other words, knowing

the total deformation at a single location is not enough to anticipate the growth at

that location. The data presented here are only a macroscopic mechanics descrip-

tion and further experiments are needed at the cellular scale to clarify the biological

pathways involved in the growth process. Nevertheless, this non-locality hypothesis is

also supported by our previous studies that found an expander-induced growth field

which was not perfectly aligned with the expansion-induced deformation, but rather

seemed to be a smoothed version of this deformation field [115, 116]. The literature

on skin mechanobiology also points towards the coupling of non-local signals, mainly,

the production of growth factors that diffuse and trigger growth beyond points of

maximum deformation [136–138]. These secondary mechanotransduction pathways

include transforming growth factors β1 and α (TGF-β1, TGF-α) [139, 140]. Growth

factors inherently require consideration of diffusion and could help explain the mis-

match between total deformation and expander-induced growth . We also remark

that the expanders in models 1 and 4 moved approximately 2 cm from their initial

location in the grid. This could add an extra variation to the final expander-induced

growth pattern. Nonetheless, despite this movement, the expander-induced growth

field in model 4, one of the large volume protocols, did resemble the total deformation

field, similar to the other large volume case, model 2. Both small volume models show

expander-induced growth patterns that do not resemble the total deformation, even

though only the expander in model 1 moved.

A closer look at the microstructure reveals a change in epidermal thickness in the

expanded patches consistent with previous reports [141–143]. Epidermal thickness

at the apex increased in all expansion protocols. Interestingly, thickness increased

more on the small volume model 1 and model 3 compared to the large volume models
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2 and 4. This is the opposite trend with respecto to expander-induced growth at

this location. We remark that expansion-induced growth corresponds to area changes

normalized by the amount of naturally grown skin. Therefore, total growth may offer

a better understanding of epidermal thickening. Total growth at the apex was similar

between small and large volume protocols. This is because the natural growth in the

small volume modes was larger compared to the large volume cases. Nevertheless,

total growth at the apex was still higher in the large volume protocols. Further work

is needed to clarify this result. Our next step is to directly quantify proliferation rates

of keratinocytes rather than thickness values alone. Trends in the morphology of the

collagen network are not unique. Since we analyze thin histological slides, the han-

dling of these slides could potentially alter the tissue microstructure. Furthermore,

the slides are taken transversely to the skin surface and some of the network mor-

phologies are not captured within this plane. A more reliable measurement would be

a volumetric imaging approach such as second-harmonic generation [144], which we

intend to do in the near future. Nonetheless, even with the limitations of our current

approach, some trends emerge: Our analysis suggests that the papillary dermis, the

top sublayer of the dermis, is not affected by the expansion protocol. In the reticu-

lar dermis, the bottom sublayer, coherency decreases in the expanded skin. A more

careful investigation is needed to fully characterize the change in collagen microstruc-

ture over time as a result of applied stretch. Another area of future investigation is

measuring the change in mechanical properties during skin growth with noninvasive

tools [27].

This study is not without its limitations, some of which have already been ac-

knowledged. The three-dimensional photography system was compared to geometries

generated with multi-view stereo, and we verified that both methods produced the

same results. We have shown that the multi-view stereo reconstruction has errors

that are on average 2% but can reach 10% in a small number of cases [115]. We thus

expect a similar measurement error in the results presented here. Another limitation

is the small number of animals used in the experiments. Nonetheless, the results
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shown here align with our previous reports. Furthermore, even though the number of

animals is small, each grid offers 121 data points. The challenge we face is that each

of these points undergoes a different growth trajectory, and a direct comparison of

the different deformation components is not possible. To address this, we need to pa-

rameterize the growth rate as a function of deformation and solve an inverse problem

to identify the best parameters that describe the data. Such approach would then

allow a proper statistical analysis based on the growth trajectories of all 121 points

per patch. This inverse problem is one of our next goals. Finally, the methodology

still lacks a more comprehensive analysis of the cell scale. This work shows an impor-

tant step in that direction. Before, we only measured tissue scale information. Here,

we have introduced the histological analysis to better understand the remodeling of

skin during tissue expansion. Still, more work in this direction is needed in order to

identify the cellular mechanisms governing the observed histological changes.

2.5 Conclusion

This study establishes a methodology to study skin deformations and growth in

a porcine model. Traditionally, in vitro systems have been used to characterize skin

mechanotransduction. However, such experiments are unable to capture the complex

biological response in vivo. Three-dimensional photography and isogeometric kine-

matic analysis enables tracking deformations of sizable skin patches, non-invasively,

in vivo, and over long periods of time. Using the multiplicative split of the defor-

mation gradient into elastic and growth contributions and accounting for prestrain

and natural growth allows us to precisely quantify the differences of tissue expansion

protocols for varying inflation timing and inflation volume. We found that larger vol-

umes induce a heterogeneous deformation pattern characterized by large deformation

at the apex and progressively less deformation toward the periphery of the expanded

area. The expander-induced growth field for the large inflation volumes aligned with

the total deformation patterns. For the small inflation volumes, the total deforma-
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tion and expander-induced growth fields were more homogeneous. Overall, the apical

points in the large volume models showed the greatest amount of expansion-induced

growth. Further work is needed to elucidate the biological mechanisms that link the

observed macroscopic effects to the underlying cellular mechanisms. Our histologi-

cal analysis is a first step in this direction. It confirms previous observations that

the epidermis becomes thicker upon tissue expansion. The exact mechanisms of skin

growth and remodeling remain a topic of further investigation.
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3. PROPAGATION OF UNCERTAINTY IN THE

MECHANICAL AND BIOLOGICAL RESPONSE OF

GROWING TISSUES

Abstract: A key feature of living tissues is their capacity to remodel and grow in

response to environmental cues. Within continuum mechanics, this process can be

captured with the multiplicative split of the deformation gradient into growth and

elastic contributions. The mechanical and biological response during tissue adapta-

tion is characterized by inherent variability. Accounting for this uncertainty is critical

to better understand tissue mechanobiology, and, moreover, it is of practical impor-

tance if we aim to develop predictive models for clinical use. However, the current

gold standard in computational models of growth and remodeling remains the use

of deterministic finite element (FE) simulations. Here we focus on tissue expansion,

a popular technique in which skin is stretched by a balloon-like device inducing its

growth. We construct FE models of tissue expansion with various levels of detail,

and show that a sufficiently broad set of FE simulations from these models can be

used to train an accurate and efficient multi-fidelity Gaussian process (GP) surrogate.

The approach is not limited to simulation data, rather, it can fuse different kinds of

data, including from experiments. The main appeal of the framework relies on the

common experience that highly detailed models (or experiments) are more accurate

but also more costly, while simpler models (or experiments) can be easily evaluated

but are bound to have some error. In these situations, doing uncertainty analysis

tasks with the high fidelity models alone is not feasible and, conversely, relying solely

on low fidelity approximations is also undesirable. We show that a multi-fidelity

GP outperforms the high fidelity GP and low fidelity GP when tested against the

most detailed FE model. In turn, having trained the multi-fidelity GP model, we

showcase the propagation of uncertainty from the mechanical and biological response
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parameters to the spatio-temporal growth outcomes. We expect that the methods

and applications in this paper will enable future research in parameter calibration un-

der uncertainty and uncertainty propagation in real clinical scenarios involving tissue

growth and remodeling.

3.1 Motivation

Living tissues remodel and grow in response to mechanical cues. This response

can be detrimental, which is common in diseases such as heart fibrosis and dilation

following infarct [145,146], but it can also be leveraged for medical treatment. A prime

example is tissue expansion [7,115]. In this technique, a balloon-like device is inserted

subcutaneously and inflated gradually, stretching the skin and inducing its growth

[116]. Newly grown skin created with this method is used to design flaps to resurface

large defects [106]. Even though the tissue expansion process has gained popularity

in reconstructive surgery for its unique capacity to create new skin that is equally

functional to native tissue, we still lack predictive capability of how skin adapts to

mechanical cues [97]. As a consequence, treatment plans for tissue expansion still

heavily rely on surgeon’s training and experience rather than aided by predictive

models.

Our need for quantitative knowledge of skin’s response to stretch is part of a

broader quest to fundamentally understand the mechanical adaptation of soft tis-

sues [147]. In response to this need, computational modeling of growth and remod-

eling of living matter has advanced tremendously in the last two decades [108, 148].

One common approach is to describe growth within a continuum mechanics frame-

work through the multiplicative split of the deformation gradient [123]. The split

into growth and elastic contributions isolates the two processes kinematically. The

evolution of the growth tensor is prescribed with phenomenological equations that

aim at capturing essential features of the underlying biological process [149]. The

elastic tensor, on the other hand, dictates the stress field through an appropriate
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constitutive equation describing the tissue mechanical behavior. This approach has

been used for a plethora of examples, including the skin, but also valve leaflets, the

heart, arteries, and the brain, to name a few applications [150–153]. The theoreti-

cal framework has been extremely successful in isolating key features of the growth

and remodeling process. At the same time, the maturation of this methodology to

the point at which it can guide medical treatment still requires overcoming some

longstanding challenges. One open question is to incorporate the role of inherent

variability in biological response and tissue mechanical properties on the correspond-

ing probability of the spatio-temporal growth and remodeling outcome [101]. The

current paradigm relies on detailed finite element (FE) models with deterministic

parameters adjusted based on some combination of experimentation and parameter

sensitivity analyses [154]. This is not enough for decision making in the clinic. At

the other end of the spectrum, fully personalized FE methods, such as [147], are also

impractical if not unfeasible at scale.

A recent explosion of data-science and machine learning methods has started to

permeate into the tissue biomechanics community [155–160]. For example, we have

recently tackled the propagation of material behavior uncertainty through reduced

order models and Gaussian process (GP) surrogates in the context of reconstructive

surgery [100, 101]. Our methodology relies on simulation of many reconstructive

surgery procedures spanning a range of inputs, namely, tissue mechanical properties

and flap design parameters. The Bayesian surrogate is computationally inexpensive

and enables tasks such as parameter calibration, uncertainty propagation, and design

optimization. Other examples of how data science is impacting biomechanics include

data-driven constitutive modeling, multiscale homogenization, and Bayesian model

selection [161–164].

Here we present the use of Bayesian surrogates to enable uncertainty analysis of

tissue growth and remodeling. We focus on tissue expansion. Unlike our previous

work which dealt with uncertainty in variables that impact the state of deformation

and stress at a single instant in time, the growth and remodeling process entails incor-



43

porating uncertainty in biological parameters which propagates through time coupled

with the mechanical equilibrium problem (see Figures 3.1 and 3.2). In turn, the cor-

responding computational models are also more expensive to evaluate compared to

mechanical equilibrium at a single time instant. To deal with this challenge, we pro-

pose to use multi-fidelity machine learning techniques [165]. While in this study we

rely solely on simulation data, an added benefit of the multi-fidelity framework is that

it enables combination of different kinds of data, including from experiments [166].

In essence, multi-fidelity approaches imply combining data with different levels of

resolution or accuracy. For example, there might be some data which is very reliable,

such as measurements or simulations with very detailed spatial or temporal resolution

and with high accuracy. Usually, these data are difficult to obtain, either because the

simulation is computationally expensive, because the parameter input space is very

large, or because the experiments are costly or time consuming [167, 168]. Usually

there are other, less expensive (financially and computationally) means of acquiring

data, such as changing the model to a simplified one or doing experiments with less

specialized equipment [169,170]. In a multi-fidelity framework, these different sources

of information are combined to create a new model that outperforms the predictions

done with a single type of data [171].

The multi-fidelity approach is particularly appealing for creating predictive mod-

els of biological tissue adaptation. As mentioned previously, biological systems are

characterized by inherent uncertainty in mechanical properties and biological re-

sponse [172–174]. Computational models with different level of detail can be con-

structed to compute the growth and remodeling response over time for a wide pa-

rameter range. Here we only employ simulation data to train the surrogate, but the

problem can be extended to capture our previous experimental work [115]. Further-

more, we specifically use multi-fidelity GP regression. This allows us to not only

make predictions of the tissue response for a new set of inputs, but it also gives us

the confidence in the prediction based on the observed data. We are hopeful that

constructing this kind of data-driven model for tissue growth and remodeling will
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Fig. 3.1.: Multi-fidelity surrogate for skin growth. The uncertain input space consists
of the mechanical and biological response parameters as well as the volume of the
expander: [µ, k,K, n,V] where µ is the shear modulus, and k, K, and n are coefficients
of a Hill function controlling the growth rate. Samples of this space are used in
finite element simulations with different level of detail or fidelity. The corresponding
output is the growth field ϑg, which varies in space and time. The the full output is
transformed into pairs of input-output data from the different fidelity models which
are used to train a multi-fidelity Gaussian process surrogate. The surrogate predicts
the mean and confidence interval of the growth variable over space and time at a new
input [µ∗, k∗,K∗, n∗,V∗].

impact the clinical setting in the near future by enabling uncertainty analysis, model

calibration, and treatment optimization.
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3.2 Methods

3.2.1 Tissue growth through the multiplicative split of the deformation

gradient

We start by introducing some standard notation. Let X ∈ B0 ⊂ R3 be the

reference configuration and x ∈ B ⊂ R3 the current configuration of the tissue. The

local deformation is captured by the gradient F = ∇Xx, whose determinant is the

volume change J = det(F). For skin, since it is a membrane, we define the normal

field N. This vector field, in turn, allows us to define the area deformation field

induced by F, which we refer to as ϑ = | |cof(F) ·N| |.

Growth in biological materials can be done via the multiplicative split of the

deformation gradient into growth and elastic components [123]

F = FeFg . (3.1)

The growth tensor Fg captures the biological response and requires further defi-

nition of its form, which is both a constitutive and kinematic assumption. For skin,

since it is a thin membrane, we consider only in plane area growth

Fg =
√
ϑgIs +N ⊗ N , (3.2)

where ϑg is the area growth, and Is = I−N⊗N is the surface identity defined in terms

of the second-order identity tensor I in the reference configuration and the surface

normal N. The split Eq. (3.1) further implies the split of the area change into elastic

and growth components

ϑ = ϑeϑg . (3.3)

The elastic deformation Fe in Eq. (3.1), encapsulates the mechanical response

of the tissue. We consider skin as a hyperelastic material [76, 118]. The mechanical

equilibrium of the tissue depends on the definition of a strain energy function in terms
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of the elastic component of the deformation only, Ψ(Fe) [175]. A thought experiment

that may bring clarity to the split of the deformation gradient consists of imagining

that we cut the current configuration of the tissue, B, into small pieces while removing

all external forces and constraints. All these small portions of material would then

achieve mechanical equilibrium. Each piece is allowed to have its own equilibrium

state, such that the field Fe is not necessarily the gradient of a deformation field. This

is why the multiplicative split is also said to introduce an intermediate incompatible

configuration [116]. The total energy released in the thought experiment depends

only on the field Fe, hence Ψ(Fe). On the other hand, the equilibrium configuration

of each piece of material depends on its growth history Fg. The stress in the current

configuration is

σ = Be ∂Ψ

∂Be , (3.4)

with Be = FeFe> the left Cauchy-Green elastic deformation tensor. Alternatively, the

stress can be expressed in the intermediate configuration or in the reference config-

uration, as reviewed in [176]. The overall stress field has to satisfy balance of linear

momentum in the standard form

∇ · σ = 0 . (3.5)

The simulation of the growth process with the FE method requires the derivation

of the consistent tangent. We postpone the discussion of the numerical implementa-

tion until after we have introduced the corresponding constitutive equations for the

biological and mechanical behavior of skin.

3.2.2 Constitutive modeling of growth

We already introduced the assumption that growth of skin occurs only in the plane,

which is motivated by our current understanding of skin growth in tissue expansion
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[136, 177]. Next, we need to prescribe the evolution of the growth variable. Growth

is a dynamic process and a constitutive model entails specifying the rate of change

of growth in response to the mechanical cues. Following our current understanding

of skin mechanobiology, we pose that the growth rate is proportional to stretch in

a nonlinear fashion [97]. We depart from previous forms of the growth rate [175].

In the spirit of a systems biology approach, we assume that the elastic deformation

generates a chemical signal that is interpreted by the cells, showing saturation as the

input increases. Hence, we use a Hill function

Ûϑg = H(ϑe) = k(ϑe − ϑcr)n
Kn + (ϑe − ϑcr)n , (3.6)

which is parameterized by k,K, ϑcr and n. In the uncertainty analysis presented here

we consider the parameters k,K and n as sources of biological uncertainty. We do

not consider variation in ϑcr and instead fix this parameter to 1.1. The reason for

this choice is that ϑcr controls the homeostatic state. Changing this parameter would

require an additional equilibration step prior to the tissue expansion procedure, which

we avoid here.

3.2.3 Constitutive modeling of skin mechanics

Skin is a complex tissue, comprised of three layers with distinct structure and

mechanical behavior in just 1 − 3 mm across the thickness [37]. The mechanical

response under tension is primarily driven by the dermis, which is the intermediate

layer of the skin [45]. The dermis is a connective tissue, and it is primarily made out of

collagen. At moderate deformations, the stress-strain curve is only slightly nonlinear.

Subjected to progressively larger strains, the skin exhibits rapid stiffening, resulting

in a J-shaped stress-strain curve, characteristic of other connective tissues [178]. The

collagen fiber network in the skin is a source of anisotropy [51,179], although the fiber

dispersion seen in the dermis is relatively large [180]. Extensive efforts in constitutive

modeling of skin mechanics has resulted in a variety of strain energy functions [118].
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In the work shown here we restrict our attention to a neo-Hookean strain energy

function

Ψ =
µ

2
(I1 − 3 − 2 ln(Je)) + λ

2
ln2(Je) , (3.7)

where I1 = Be : I is the first invariant of the left Cauchy-Green elastic deformation

tensor, Je = det(Fe) is the elastic volume change, µ is the shear modulus, and λ is

the bulk modulus.

Like most biological materials, skin shows inherent variability in mechanical prop-

erties. For instance, it is clear to anyone that the skin varies from one anatomical

region to another [23, 181]. In addition, there are changes in skin mechanics with

gender, age, sun exposure, nutrition, to name a few factors [67, 182, 183]. Even indi-

viduals from similar demographics can have distinct skin mechanical behavior. With

non-invasive mechanical testing through suction devices, the properties of skin under

suction have been measured for a large population [184,185]. In this paper we consider

the variability in mechanical properties through the uncertainty in the parameter µ.

The stress can be calculated explicitly based on Eq. (3.4) and Eq. (3.7),

σ =
1

Je (λ ln(Je) − µ)I + µ

Je Be . (3.8)

3.2.4 Finite element implementation

We solve the coupled problem of growth under evolving mechanical equilibrium

with a user subroutine in the nonlinear FE package Abaqus (Dassault Systems,

Waltham, MA). Our implementation follows closely that of [175]. We create a square

domain of dimensions 10 × 10 × 0.3 cm and discretize it with either 800, 3,200, or

20,000 trilinear brick elements. As it will become clearer later on, the different mesh

refinement leads to a multiple levels of fidelity in the data. A rectangular expander of

dimensions 4.5 × 8 cm is placed underneath the skin. We use the fluid cavity feature

in Abaqus. We start the simulation with the initial conditions F(t = 0) = Fe = I,
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ϑg(0) = 1, and an empty expander. The expander is then inflated to a given volume

V by implementing a PID controller in an additional user subroutine. The degrees of

freedom are the displacement vectors at the nodes, uni, and the growth field, which

is discretized at the integration points ϑ
g
ip. The mechanical equilibrium problem is

nonlinear and has to be solved iteratively. Given a guess for the displacements uni,

the deformation gradient tensor F is available at the integration points. In the inte-

gration point subroutine the growth tensor is then updated by solving the following

backward Euler problem

ϑ
g
t+∆t − ϑ

g
t − ∆tH(ϑe

t+∆t) = 0 , (3.9)

where ϑ
g
t is the growth variable from the previous converged step, ϑ

g
t+∆t is the new

guess for the growth variable for the current time step t + ∆t, and ϑe
t+∆t = ϑ/ϑ

g
t+∆t is

the current guess for the elastic deformation component of the area change. Solving

this local problem, the new Fg is constructed, which, together with the current guess

for F yields Fe. The stress is calculated according to Eq. (3.8). Finally, to drive the

global Newton-Raphson iterations, we introduce the Eulerian tangent moduli

c = 4Be ∂2Ψ

∂Be∂Be Be = ce + cg . (3.10)

The elastic moduli has also an elastic and a growth component. The elastic part

is

ce = λi ⊗ i + (µ − λ ln(Je))(i⊗i + i⊗i) , (3.11)

with {•⊗◦} + i j kl = {•}ik{◦} jl , {•⊗◦} + i j kl = {•}il{◦} j k , and i the second-order

identity tensor in the current configuration. The second part of the Eulerian tangent

moduli is defined as

cg = − ∆t
Kϑϑϑg

∂ Ûϑg
∂ϑg
(λϑgi + µ(B − n ⊗ n)) ⊗ (ϑi − J2ϑ−1(F−>N) ⊗ (F−>N)) , (3.12)
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where B = FF> the left Cauchy-Green deformation tensor, Kϑ = 1 − ∂ Ûϑg
∂ϑg∆t, which is

calculated based on the derivative of the residual Eq. (3.9) with respect to ϑg, and

n is the surface normal vector in the current configuration. In Abaqus, the tangent

moduli used is that corresponding to the Jaumann stress rate. Thus, Eq. (3.10) is

further transformed to the desired tangent as shown in [152,186].

3.2.5 Multi-fidelity Gaussian process regression

A GP is a probability measure over functions such that the function values at any

set of input points have a joint Gaussian distribution [187]. This property, and the

fact that for any set of observations with joint Gaussian distribution, the distribution

of a subset conditioned on the rest is also Gaussian, enables making predictions at

an unknown point based on previous observations. In other words, the GP regres-

sion can be interpreted in terms of Bayes’ rule as representing the posterior state of

one’s knowledge about an unknown function conditional on observed data. Addition-

ally, since the posterior is also a GP, both the expected value and covariance of any

collection of new points are analytically available.

We are interested in learning a latent function f (x) from input-output observa-

tions. Assume that we have collected M observations with inputs xm in Rd and

outputs ym = f (xm) + εm in R, where εm are independent identically distributed zero

mean Gaussian random variables with unknown variance σ2
G, to be determined. Gen-

erally, it is a good idea to include a noise term even if the measurement process

noiseless, because it improves the numerical stability of the algorithm [188].

We are collectively denoting this dataset by D = (X, y), where X ⊂ RM×d is the

collection of M total inputs, while y is the vector with all outputs. We posit that

out prior state of knowledge about f can be described by a GP with the mean and

covariance functions, m(·; θ) and k(·, ·; θ), i.e.,

f (·)|θ ∼ GP (m(·; θ), k(·, ·; θ)) , (3.13)
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where θ includes all hyperparameters that affect the mean and covariance functions.

To keep the notation simple, assume also that σ2
G ∈ θ even though the mean and

covariance functions do not depend on it. Assuming no particular knowledge about

the trend of the function, we pick a zero mean function. The choice of the covariance

function models our prior beliefs about the regularity of the function (there is a

one-to-one correspondence between the differentiability of the covariance function

and samples from the GP probability measure [189]). Assuming that f is infinitely

differentiable, we choose the squared exponential covariance function:

k(x, x′; θ) = v exp

{
−

d∑
i=1

(
xi − x′i

)2
2`2i

}
, (3.14)

where the positive hyperparameters {v, `1, . . . , `d} ∈ θ model the variance of the pro-

cess and the length scales of each input dimension, respectively. Note that the GP

regression avoids the explicit parameterization of f and instead it let the data speak

for themselves, with the only exception of these hyperparameters.

To fit the hyperparameters, we look for the θ that maximizes the log-marginal

likelihood

logp(y|X, θ) = −1

2
y>(K + σ2

GI)−1y − 1

2
log|K + σ2

GI| − M
2

log2π (3.15)

where K is the M ×M symmetric and positive definite matrix Ki j = k(xi, x j ; θ), which

stores the covariance between every pair of inputs in x. As stated at the beginning

of this section, the fact that any set of function values is jointly Gaussian means that

the prior of the observed data D together with a test pair (x∗, f∗) satisfy


y

f∗

 ∼ N ©«

0

0

 ,


K + σ2
GI k(X, x∗; θ)

k(x∗,X; θ) k(x∗, x∗; θ)

ª®¬ , (3.16)
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where k(x∗,X; θ) = (k(x∗, x1; θ), · · · , k(x∗, xM ; θ))> is the cross covariance between x∗

and X and f∗ is the value of the function at the unknown input x∗. Using Bayes’ rule:

f∗ |D, x∗, θ ∼ N
(
µ∗(x∗; θ), σ2

∗ (x∗; θ)
)
, (3.17)

where

µ f∗(x∗; θ) = k>(x∗,X; θ)(K + σ2
GI)−1y (3.18)

and

σ2
∗ (x∗; θ) = k(x∗, x∗; θ) − k>(x∗, x; θ)(K + σ2

GI)−1k(x, x∗; θ) (3.19)

are the predictive mean and variance, respectively.

Up to this point, the GP regression is considered for a single information source.

We now extend the concept to exploit the availability of data sources of different

fidelity. To be specific, different levels of mesh refinement in the FE model indicate

the level of fidelity in this study, e.g., a very fine mesh corresponds to the high fidelity

simulation, while a coarser mesh is associated with a lower fidelity simulation. More

generally, assume that there are S levels of increasing fidelity each corresponding to

an unknown function ft with t = 1, . . . , S. Even though these functions can be quite

different, the assumption that they describe the same physical phenomenon makes it

more likely that they exhibit similar trends. If this assumption is true, then one may

learn the high fidelity function fS from a large amount of low fidelity examples and a

small number of high fidelity ones. Let Dt := (Xt, yt) with t = 1, . . . , S be data sets at

the fidelity levels t = 1, . . . , S. Hence, y1 represents the less accurate but inexpensive

output data obtained from the lowest fidelity, while yS is the most accurate but

expensive data which comes from the highest fidelity. One way to combine such

multi-fidelity information is through the autoregressive approach of [190]. In this

approach, one starts by assigning a GP prior on the lowest fidelity, i.e.,

f1(·)|θ1 ∼ GP (m1(·; θ1), k(·, ·; θ1)) , (3.20)
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and then modeling the next level of fidelity according to

ft(x) = ρt−1 ft−1(x) + δt(x) , (3.21)

for t = 2, . . . , S, where ρt−1 is a scaling factor that quantifies the correlation between

output data at fidelity levels t − 1 and t, and δt(x) is a correction term with prior

modeled as a GP, i.e., δt(·) ∼ GP(µt(·), kt(·, ·; θ)), with µt(·) and kt(·, ·; θ) the mean

and covariance functions. Although the autoregressive approach from Eq. (3.21)

could lead to the combination of multi-fidelity information, the implementation is

hindered by computational cost. The computation of the full covariance for the

original autoregressive approach is unfeasible when the number of fidelity levels or

the input dataset is large [190].

To overcome this barrier, the autoregressive formulation has been advanced by

replacing the ft−1 prior with its posterior, denoted f∗t−1. This change leads to a more

numerically efficient algorithm [191]. In practical terms, the proposed switch implies

that the information from different fidelity levels is decoupled and one can compute

separate covariance matrices at each fidelity level recursively rather than computing

the full covariance matrix for all S levels at once. The operation count to compute

the inverse of the covariance by Cholesky decomposition is O(n3t ) for each fidelity

level, and the total operation count becomes
∑S

t=1 O(n3t ), instead of O((∑S
t=1 nt)3) that

would be needed for the full covariance of all fidelity levels. We also remark that the

dataset for each fidelity has nested training inputs, Xt ⊆ Xt−1, which is not necessary

but enables a closed form expression for the parameters in the multi-fidelity GP

regression. Finally, we note that in [191], a constant value of ρt−1 was used, which

captures linear correlations between different fidelity models. Of course, ρt−1 can also

be a function of the input ρt−1(x), to allow for nonlinear correlations. Recently, the

authors of [166] have proposed a new approach which not only maintains the same

philosophy of [191] but also captures nonlinear correlations between different levels

of fidelity.
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The approach of [166] is a kind of deep GP in which the GP posterior from a

previous inference level is used as one more dimension in the training input dataset

of next level of fidelity. Hence, the training input dataset ends up having d + 1

dimensionality for all except the lowest level of fidelity. This approach thus replaces

Eq. (3.21) with the nested model

ft(x) = gt(x, f∗t−1(x)) , (3.22)

where gt ∼ GP(ft |0, kgt ((x, f∗t−1(x)), (x
′
, f∗t−1(x

′)); θt)) [166] . We also assume that the

input data points are nested, similar to the autoregressive scheme before. A covariance

function yielding function samples of the form of Eq. (3.22), see [166], is:

kgt (x, x
′
; θgt ) =kρt (x, x

′
; θρt )k ft ( f∗t−1(x), f∗t−1(x

′); θ ft ) + kδt (x, x
′
; θδt ) , (3.23)

where kρt , k ft , and kδt denote covariance functions with hyperparameters θρt , θ ft ,

and θδt , respectively. Note that k ft makes use of the function value at the t − 1 level

of fidelity, and not the input point at the t level of fidelity. In [166], the squared

exponential kernel, Eq. (3.14), was employed, and we do the same in this paper.

Except for the lowest level of fidelity, which is a standard GP model and has a

Gaussian as posterior, the posterior distribution of f∗t−1(x∗) with t ≥ 3 is no longer

Gaussian since the GP of a GP is not a GP anymore. We use Monte Carlo integration

to calculate the predictive mean and the corresponding variance of the posterior

distribution, except at the lowest level of fidelity.

The multi-fidelity GP regression in Eq. (3.22) can be applied to various applica-

tions in which it is desirable to combine information obtained with different fidelity.

For example, combining data from finite element models with different degree of mesh

refinement [192], linearization of nonlinear mathematical expressions [193], and reduc-

tion of model dimension such as the approximation of a 3-D physical system with a

1-D formulation [194], are a few examples in which one can get different fidelity of

data for the same system of interest. In addition, experimental data might also be
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used as one level of fidelity. In this study, we deal only with simulation data. Three

different levels of fidelity are considered, each corresponding to a different discretiza-

tion scheme in the FE model (see Fig. 3.2a). Note that the lowest fidelity level is

expected to be inaccurate yet really inexpensive to evaluate (approximately 10 min-

utes on 1 CPU). In contrast, the highest fidelity model is much more accurate but

computationally expensive (approximately 6 hours on 1 CPU). For the GP regression

in this study we used the open source library GPy [195], and the multi-fidelity GP

regression code from [166].

3.2.6 Propagation of uncertainty in the biological and mechanical re-

sponse of growing skin

As discussed in the previous section, we build multi-fidelity surrogates to predict

the deformation and growth of skin resulting from tissue expansion. The tissue ex-

pansion protocol is determined by the inflation volume V , and the inflation timing,

i.e., the time that the surgeon waits before the next inflation step. We do not con-

sider uncertainty in these variables. Rather, we fix the volume to V = 40, 50, or 60

cm3 (cc), common in clinical practice [7, 97], and a time period of t = 7 days, also

a common time window between consecutive inflation steps [7, 97]. We remark that

in the majority of the results we show the output from three different GPs, each for

a different volume. However, the volume can be considered as an input parameter

for the regression, as we show towards the end of the Results section 3.3. The un-

certainty in the response is due to either the mechanical or the biological response of

the tissue. The shear modulus µ is considered as the only source of uncertainty for

the mechanical response, and the parameters k, K, and n are the sources of biological

uncertainty. The possible ranges for these parameters are summarized in Table 3.1.

These ranges have been determined based on the literature [184,185] and our previous

work on a porcine model of tissue expansion [97,115].
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Fig. 3.2.: Multi-fidelity data used to construct the Bayesian surrogate of skin expan-
sion. a) Finite element models of tissue expansion with different mesh refinement.
Models are discretized with 800, 3,200, and 20,000 trilinear brick elements. A rectan-
gular expander is inflated below the skin, causing total area change ϑ, characterized
by greater deformation at the apex of the expander compared to the periphery. b)
Time evolution of the output of interest, the growth area change ϑg, over the domain
discretized with the finest mesh. The expander is inflated to either 40, 50, or 60 cc on
day 1, and the volume is held constant over 7 days. Growth increases over time, and
shows spatial variation with greater growth at the apex. c) The field ϑg is defined
over the entire domain, but we reduce the output to a 10 × 10 grid that we use to
train the surrogate. We remark that both spatial and temporal information is used.
Accordingly, the bottom right panel illustrates that for each grid point we have the
time history of ϑg.
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Table 3.1.: Mechanical and biological parameter ranges for input space

Parameter Range
µ [MPa] [0.10,1.00]
K [-] [0.02,0.06]
k [-] [0.10,1.00]
n [-] [0.80,1.20]

We note that the FE simulation leads to a deformation and a growth field over

the domain. In the past we have used principal component analysis to extract the

main features of the deformation and stress fields [100]. Here, we instead opt to keep

the spatial analysis consistent with our animal protocol [97], and create independent

surrogates for each region from a 10 × 10 grid. The outputs for the surrogates for

each of these regions are the total deformation ϑ (Fig. 3.2a) and the growth variable

ϑg over time (see Fig. 3.2b and c).

3.3 Results

3.3.1 Creation of Gaussian process surrogates

The input parameters for mechanical and biological response and their correspond-

ing range are shown in Table 3.1. For the low fidelity data we sample 100 points from

the space [µ,K, k, n] using Latin hypercube sampling (LHS), and we extend these

points to a 5-dimensional input space by including time as the additional input.

These input points are denoted X̃1. Likewise, we generate the input datasets X̃2 and

X3 by sampling additional 50 and 10 input points from [µ,K, k, n], respectively. In

order to satisfy the requirement of nested input datasets, we run low fidelity simula-

tions for all input points X1 = X̃1 ∪ X̃2 ∪X3, the medium fidelity model is evaluated

at X2 = X̃2 ∪ X3, and the high fidelity model is only run for X3. This strategy not

only satisfies nested inputs for increasing fidelity, but also preserves the LHS features

of evenly and randomly distributed points over the input space. The FE models with

increasing fidelity are depicted in Fig. 3.2a. For each simulation, we inflate the ex-
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pander to the volume V = 40, 50, or 60 cc at day 1 and keep the volume constant

over 7 days. Note that in the majority of this section we create separate multi-fidelity

GP surrogates for each volume, but we also show that the volume can be used as

an additional input during regression as depicted in Fig. 3.10. Note that the output

of the simulations is the growth field ϑg over the domain and across time (see Fig.

3.2b). As noted, time is used as an input in the regression, and the spatial variation

is captured by creating surrogates independently for the 10 × 10 grid illustrated in

Fig. 3.2c.

The simulation in Fig. 3.2b shows the growth field over time for a single input

point corresponding to the mean value of the parameter range in Table 3.1. Yet,

even for a single input point, we note that the simulation shows the expected trends

associated with skin growth in tissue expansion: the growth field is greatest at the

apex of the expander and less toward the periphery, and the response is nonlinear

[196].

The data from the 230 simulations are used to build the surrogates according to

the Materials and Methods section 3.2.

3.3.2 Validation of the Gaussian process surrogates

We create a validation dataset by sampling 30 additional points from the [µ,K, k, n]

space using LHS. For these points we only run the highest fidelity model which we

consider as the true response in this paper. Fig. 3.3a shows the average error of the

surrogates compared to the validation set for each of the 10 × 10 grid points. Each

row in the figure corresponds to a different volume. In addition to showing the error

in the prediction using the multi-fidelity GP regression, we also show the error for

two alternative surrogates, the high fidelity GP regression and the low fidelity GP

regression. As the name implies, the high fidelity surrogate is built with data from the

most detailed FE model only, while the low fidelity GP uses only the results from the

coarsest mesh. As desired, the multi-fidelity scheme outperforms the single fidelity
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Fig. 3.3.: Validation of the surrogates against high fidelity simulations that were not
used in the training. a) Average of relative error for the validation dataset composed
of 30 input parameters × 7 time points for each of the 10 × 10 grid points. The multi-
fidelity scheme is compared against single fidelity Gaussian process (GP) surrogates,
i.e., surrogates trained with either only high or low fidelity data. The multi-fidelity
GP surrogate outperforms the alternatives. b) Histograms of the error used to create
the contours in a.

surrogates. Fig. 3.3b shows the histograms of the relative error for all the validation

points (30 input parameters × 7 days × 100 locations), further illustrating the quality

of the multi-fidelity GP surrogate.

Given that the output data varies not only in space but also in time, Fig. 3.4

focuses on the temporal variation. Once again, we are interested in the performance

of the multi-fidelity scheme against single fidelity approaches. Fig. 3.4 shows the
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temporal variation of ϑg for the three volumes of interest and three points of interest:

the apex, a middle point, and a point at the periphery of the expanded region (see

also Fig. 3.2c). The input point for the plots in Fig. 3.4 is the mean value of

the parameter ranges in Table 3.1. Alongside the predictions from the surrogates,

we show the results from the high fidelity simulations at the same input. Crucially,

Fig. 3.4 also shows the confidence intervals predicted by the surrogates based on the

observed data. Undoubtedly, being able to show the uncertainty in the prediction is

one of the main appeals of GP surrogates. To further analyze the difference between

the surrogates, Fig. 3.5 shows scatter plots of the standardized residual for the three

volumes of interest and for all grid points. The standardized residual is the ratio of

error between the true and the predicted values divided by the standard deviation of

the prediction. If the GP surrogate is well calibrated, we expect to see the values of

the standardized residual to be contained in the [−3, 3] confidence interval. Moreover,

packing of the scatter plot around 0 is reflective of smaller errors in the prediction.

Therefore, from Fig. 3.5 we see that the multi-fidelity scheme shows standardized

residuals well within the [−3, 3] range and mostly around 0, as desired. The principal

observation from Fig. 3.4 and 3.5 is that the low fidelity surrogate evidently performs

poorly compared to the two other alternatives.

Our last validation experiment is to show the trade-off between the number of

high fidelity evaluations for training and the quality of the multi-fidelity surrogate

compared to the high fidelity GP. It is reasonable to expect that as the number

of high fidelity training points increases, the single fidelity GP built with the high

fidelity data alone might outperform the multi-fidelity approach. For the data shown

in Figures 3.3 to 3.5, a total of 230 simulations were used for training, out of which

Mh = 10 simulations were done with the most detailed finite element model. Fig.

3.6 shows the results when there are either Mh = 5 or Mh = 20 high fidelity function

evaluations available for training of the surrogates. With Mh = 5, both the single

and multi-fidelity schemes perform poorly in terms of average relative error over the

validation set, while for Mh = 20 the multi-fidelity approach continues to outperform
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Fig. 3.4.: Validation of the temporal response predicted by the surrogates against the
corresponding high fidelity simulation. Plots of the growth variable ϑg are predicted
for 3 points of interest: the point in apex, middle, and the periphery of the expanded
area. The test input for the surrogates is the mean of the parameters in Table 3.1.
The output of the corresponding high fidelity simulation is shown for validation. The
evaluation of the Gaussian processes (GPs) results in the prediction of a mean value
and the corresponding variance, a key feature of Bayesian surrogates. The low fidelity
surrogate is completely inaccurate, while the multi-fidelity and high fidelity GPs have
good agreement with the true response in all three volumes.
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the high fidelity GP (Fig. 3.6). This trend is clearer when looking at the histograms

of the relative error shown in Fig. 3.6.

Fig. 3.5.: Validation of the temporal response predicted by the surrogates against the
corresponding high fidelity simulation. The test input is the mean of the parameters
in Table 3.1. The standardized residuals are shown for the 100 grid points for three
volumes of interest, V = 40, 50, and 60 cc. If the surrogates are trained properly,
the standardized residuals should fall within the [−3, 3] confidence intervals as can be
observed for the multi-fidelity Gaussian process regression.
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Fig. 3.6.: Effect of changing the number of high fidelity function evaluations on the
performance of the multi-fidelity and high fidelity Gaussian process (GP) surrogates
for inflation volumes V = 40, 50, and 60 cc. Average error over the 10 × 10 grid and
histograms of the error are shown for the case when there are either Mh = 5 or Mh = 20
high fidelity function evaluations available for training. For Mh = 5 both surrogates
perform poorly, while for Mh = 20 the multi-fidelity GP surrogate outperforms the
single fidelity approach

We then focus on the performance of the surrogates over the temporal domain.

Fig. 3.7 shows the validation results for V = 50 cc only. Results for other volumes

are shown in the Supplementary materials. The trends are similar between the dif-

ferent volumes: the multi-fidelity surrogates outperform high fidelity models for both

Mh = 5 and Mh = 20. More quantitative comparison is represented in Fig. 3.7b in

terms of the standardized residual for all 100 grid points for all the validation sim-

ulations. Not surprisingly, Mh = 20 leads to better performance than Mh = 5 for

all volumes. Once again, the standardized residuals confirm that the multi-fidelity

scheme outperforms the single fidelity schemes. However, these results also under-

score the importance of choosing a suitable number of high fidelity evaluations. If
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there are too few high fidelity evaluations, here Mh = 5, the multi-fidelity GP surro-

gate itself cannot recreate an accurate GP surrogate model. On the other hand, if the

number of high fidelity evaluations is high enough, Mh = 20 here, the high fidelity GP

regression itself is already accurate enough and there is no more need to incorporate

low fidelity information to improve the prediction.

Fig. 3.7.: Effect of changing the number of high fidelity function evaluations on
the performance of the multi-fidelity and high fidelity Gaussian process regression
for V = 50 cc. The test input for the surrogates is the mean of the parameters
in Table 3.1. Results are shown for the cases in which either Mh = 5 or Mh =

20 high fidelity function evaluations are available for training. (a) Prediction of
the temporal evolution of the growth variable ϑg for three points of interest: apex,
middle, and periphery of the expander. Plots show the predictive mean and confidence
intervals alongside the truth (corresponding high fidelity finite element simulation).
(b) Standardized residuals for all 100 grid points and 7 time points.
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3.3.3 Uncertainty propagation: skin material properties and biological

response

We use the validated surrogate to investigate the effect of uncertain mechanical

and biological response on the resulting tissue growth. We first set the biological

parameters [K, k, n] to their mean value and focus on the variation of the material

parameter µ. We remark that the range for the biological parameters is based on our

previous experience with the porcine model of tissue expansion [97, 196]. However,

without any additional detailed knowledge about the distribution of the biological

parameters, we assume the mean of the range to be a meaningful choice. For the

mechanical response, on the other hand, we know that skin mechanical properties

change with patient demographics. Here we focus on the effect of aging [67, 183].

Testing of skin in vivo with suction devices has enabled determination of mechanical

function parameters for a wide patient population [184, 185]. In particular, in [185],

the vertical displacement of skin under suction (with the same value of negative

pressure used for the entire patient population) is reported as a function of age.

Based on this report, we estimate that older skin (60 to 80-year-old demographic) is

2.5 times stiffer compared to younger skin (20 to 40-year-old demographic). From

their data, it is also clear that there is some variance of mechanical properties for

each age group [185]. Hence, we consider two normal distributions of µ to capture the

variation in mechanical properties reported in [185]. For the younger group we assume

that µ follows a normal distribution with mean µy = 0.3 and standard deviation 0.051,

which results in a 95% confidential interval [0.2, 0.4] for µy. For the older individuals

we consider also a normal distribution, with mean µo = 0.75 and standard deviation

0.026, resulting in [0.7, 0.8] as the 95% confidential interval of µo. We propagate

this uncertainty through the surrogate. To do so, we sample 100 points from the

distribution of µ for each of the age groups, and evaluate the surrogate. Then,

collecting the 100 surrogate evaluations, we determine their mean and confidence

interval with Monte Carlo integration [166].
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Fig. 3.8.: Propagation of mechanical response uncertainty on the resulting tissue
growth at periphery (a), middle (b), and apex (c) for V = 50 cc. We consider two
age groups with different distribution for the shear modulus, µ. For the younger
group, the tissue parameter is normally distributed with mean µy = 0.3 and standard
deviation 0.051. For the older group, the mean is µo = 0.75 and the standard deviation
is 0.026. We sample these distributions and use the surrogate to predict the resulting
area growth, ϑg, at three locations of interest. The younger group shows greater
growth compared to the older group at the middle (b) and apex (c) points, while the
periphery (a) point shows little difference between age groups.

In Fig. 3.8, we show the results for the three points of interest (apex, middle,

and periphery) for V = 50 cc, while results for other volumes is available in the Sup-

plementary materials. The younger group tissue properties lead to a higher growth,

especially at the apex compared to the older group (Fig. 3.8). The mean value of

the response has similar trends in both groups, with growth reaching equilibrium by

day 3. The uncertainty in the growth for the younger group is greater compared to

the older group, which is expected since the uncertainty in the material properties

for the younger group is much larger compared to that of the older group.

The second part of the uncertainty propagation analysis is to investigate the effect

of uncertainty in the biological response. Lacking specific knowledge of how these

parameters vary with different demographics, we focus on the effect of choosing these

parameters to be either their 10 percentile or 90 percentile. We still consider the

two age groups, but present only the results for V = 50 cc in Fig. 3.9. For each

age group, we keep two of the three biological parameters at their mean, and vary

the remaining parameter. We show the transient response for the three locations
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of interest, as well as the contour of growth (the 50 percentile of the predicted ϑg

distributions) at day 7. It is immediately clear that the response at day 7 is only

mildly affected by the biological parameters. In other words, while the material

response leads to a clear difference at day 7 between age groups, the effect of the

biological parameters is mostly seen in the transient response. The parameter K in

the Hill function describing growth is related to the saturation of the growth rate with

respect to the elastic stretch. Consequently, a smaller value of this parameter leads

to a greater sensitivity of the growth rate and to an apparent underdamped response.

The larger the K, the greater the deformation that is needed for saturation of the

growth rate, resulting in curves with greater damping. The parameter k is associated

with the time scale of adaptation. A smaller value of k leads to a slower response.

When k is set to the 10 percentile value, the growth extends up to day 5. Lastly,

the parameter n controls the nonlinearity of the growth rate in response to applied

stretch. When n is set to the 10 percentile, the response is underdamped. When n is

set to the 90 percentile, the growth curves achieve equilibrium quickly and without

oscillations for both age groups.

3.3.4 Effect of expansion volume on tissue growth under uncertainty

Our second analysis is to include the inflation volume V as an input dimension

for regression. Therefore, the input training dataset becomes [µ,K, k, n,V] with V =

30, 40, 50, and 60 cc. For this analysis, we only use ϑg at day 7, i.e., we ignore the

temporal response in this case. Nonetheless, a full regression including the evolution

of ϑg over time is also possible. After we build the multi-fidelity GPs, we propagate

the uncertainty in the mechanical response corresponding to the two age groups as

before. The results are shown in Fig. 3.10. Because the underlying assumption

of tissue adaptation is stretch-driven growth, the value of ϑg reflects the total area

stretch ϑ, which, in turn, is determined by the volume of the expander. Higher

volumes lead to increasingly more stretch and consequently more growth. However,
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Fig. 3.9.: Continued on the following page.
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The effect of biological response uncertainty coupled with the uncertainty in the me-
chanical behavior for the two age groups. The two age groups are differentiated by
the mechanical response µ. For the young group the mean value of the shear mod-
ulus is µy = 0.3, with standard deviation 0.051. For the old group, the mean value
of the shear modulus is µo = 0.75, and the standard deviation is 0.026. The con-
tours of the growth field ϑg show distinct trends between the two age groups, but
little variation as the biological parameter [K, k, n] are varied. At day 7, the young
group has an average growth greater compared to the older group. The biological
parameters mostly influence the transient response. The parameter K controls the
saturation of the growth rate in response to elastic stretch, leading to either under-
damped or overdamped curves for the three points of interest: apex (red), middle
(blue) and periphery (black). The parameter k controls the speed of the adaptation.
The parameter n influences the nonlinearity of the growth rate function, leading to
underdamped or overdamped responses.
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Fig. 3.10.: Prediction of area growth, ϑg, using Gaussian process surrogates trained
using the inflation volume V as an input during the regression. With respect to
temporal variation, only growth at day 7 is considered. Regarding spatial variation,
growth at the three points of interest: periphery (a), middle (b), and apex (c), is
shown with respect to the change of V . Uncertainty in material properties for two
age groups is also considered, as described in the main text.

there is spatial variation, with the apex point showing the more pronounced increase

in growth with increasing volume compared to the middle and periphery points. This

result underscores the importance of accounting for spatial heterogeneity in designing

tissue expansion protocols.

It should also be noted that the uncertainty in the mechanical properties of the

tissue leads to a fairly constant variance in the prediction for different volumes. In

other words, the uncertainty in the prediction of skin growth accounting for the

variation in the mechanical response is not sensitive to the volume change. In fact, this

observation then prompts the sensitivity analysis presented in the next subsection.

3.3.5 Sensitivity analysis

The last subsection of the results focuses on a global sensitivity analysis. We

follow the Sobol sensitivity analysis [197] using the SALib Python library [198]. The

main idea of the Sobol sensitivity analysis is to decompose the variance of the model

output into the contributions attributed to individual inputs. For example, an input

component is fixed while the other components are varied. If the resulting variance
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in the predictions is large, the fixed component of the input is less influential on the

output, and vice versa. After accounting for the total variance and normalization

using the conditional distribution, the first-order sensitivity index can be calculated.

This concept can be extended to higher order sensitivity indices that take into ac-

count correlations between different components of the input, e.g., the second-order

sensitivity index measures the contribution of pairs of input components. When the

dimension of the input, d, increases, the correlation between input components in-

creases as 2d − 1. The total-order sensitivity index for one specific component of the

input can be deduced in a reverse manner, i.e., the expectation of the variance of

the model output is calculated when the set of evaluation points does not have any

correlation with the component of interest [199].

We generate a total of 12,000 evaluations of the surrogate, decided from N×(2d+2),

where N = 1, 000 is the number of samples, and d = 5 is the dimension of the input

space. We use Saltelli′s sampling scheme [200]. The output dataset is retrieved,

and then processed to get the total-order sensitivity index for the apex, middle, and

periphery spatial locations of interest, and for three different volumes (Fig. 3.11). We

remark that the calculation of the Sobol indices was done via Monte Carlo integration.

Therefore, the values reported in Fig. 3.11 are bound to have some noise. Accordingly,

we report the uncertainty in the indices. Because each panel (Fig. 3.11a to c) is

derived independently, it should be interpreted individually even though the volume

change could also be treated as an input. In fact, it should be noted that the volume

consistently influences the variance of the output.

For the apex and middle points, n and K in the Hill function have less impact on

ϑg for all three volumes. In contrast, µ, k, and time are influential on ϑg, but their

importance changes for the different volumes. As volume increases, the mechanical

parameter, µ, has less contribution than k and time. This result follows from the spa-

tial distribution of the strains, and from the fact that ϑcr = 1.1. As a consequence, for

small volumes, the lower area changes, close to ϑcr, coupled with the spatial distribu-

tion of the strain field plays an important role to determine the amount of growth.
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Fig. 3.11.: Sobol sensitivity analysis of area growth, ϑg, with respect to individual
input dataset, [µ, n, k,K, t], for volumes V = 40 (a), 50 (b), and 60 cc (c). Here, t
indicates day as time. In each panel, three points of interest are considered. Each
bar indicates the total-order index. The associated 95% confidential intervals are also
shown.

As the volume increases, the strains become more homogeneous independently of µ,

and they are always larger than the critical value. Therefore, k and t become more

important than µ. These trends are particularly consistent for the middle and apex

points. For the periphery point, however, the stretch is always close to the critical

value. In the 40 cc case (Fig. 3.11a), the stretch in the periphery rarely exceeds ϑcr,

and the growth is negligible at this location for the lowest volume. As the volume

increases, the periphery point also shows similar trends compared with the apex and

middle points.

3.4 Discussion

In this manuscript we develop a multi-fidelity GP regression surrogate to inves-

tigate the effect of uncertain mechanical and biological response of soft tissues on

the resulting spatio-temporal growth field. We focus on tissue expansion, but the

analysis shown here could be used to study uncertainty in growth and remodeling for

other tissues in clinically relevant scenarios [174, 201]. The main motivation for our

analysis is the inherent variability in living tissue, both in terms of mechanical prop-

erties and also adaptation to environmental cues [202]. While computational models
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of growth and remodeling have furthered our understanding of tissue mechanobiol-

ogy, the role of uncertain parameters in these models remains poorly studied [147].

Machine learning techniques are needed to enable uncertainty analysis of biological

systems due to the high computational cost of detailed models, which prevents more

traditional analysis such as Monte Carlo sampling [203]. We have shown before that

GP surrogates enable uncertainty analysis of stress contours in reconstructive surgery

applications [97,101]. Unfortunately, as the complexity and computational cost of the

model increases, for example going from a static equilibrium analysis to a model of

skin growth in tissue expansion, standard GP regression becomes unattainable. The

multi-fidelity strategy used here circumvents this limitation. Instead of relying on a

single, very detailed model, we create three models with increasing refinement and

use data from all three models to train the surrogate.

Our results confirm that the multi-fidelity GP regression surrogate outperforms

the single fidelity GP regression surrogate over the validation set. Interestingly, the

low fidelity information is valuable even if the corresponding surrogate shows that

the low fidelity model is not an accurate representation of the system. Yet, since all

models have correlated trends in the growth field, the low fidelity information can

supplement the limited number of high fidelity simulations in the multi-fidelity ap-

proach [166]. In contrast, the epistemic error, which results from the limited number

of training, cannot be reduced in the high fidelity GP, as evidenced in Figs. 3.3 and

3.4, and in the scatter plots of the standardized residuals in Fig. 3.5.

Design of the training dataset for the multi-fidelity surrogate is a key consideration

in the methodology. Evidently, the cost of training the multi-fidelity GP regression

depends strongly on the number of high fidelity function evaluations. Too few and

the multi-fidelity model will be spoiled by the inaccurate low fidelity data. Similarly,

too many high fidelity simulations defeat the purpose of the multi-fidelity scheme.

We tested different numbers of high fidelity function evaluations but did find a clear

threshold for choosing this number. Our results indicate that the smallest number of

high fidelity function evaluations, Mh = 5, led to poor performance of the surrogates,
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whereas either 10 or 20 high fidelity simulations paired with one order of magnitude

more medium and low fidelity simulations led to an accurate surrogate. This trade-off

largely depends on the sensitivity of the system to the input parameters. The results

in Figs. 3.6 and 3.7 together with the uncertainty propagation analysis indicate that,

for the constitutive models we chose and for the range of parameters considered, only

a few high fidelity simulations are required. Further work is needed to establish design

parameters for the training set of the multi-fidelity surrogates.

As mentioned at the beginning of this section, a key feature of biological tissue

that has been often disregarded in the field of tissue mechanobiology is uncertainty

in the mechanical and biological response. Moreover, the high nonlinearity of the

growth process is one of the main difficulties to accurately investigate correlation of

the growth and remodeling fields with varying mechanical and biological parameters.

Our study is precisely tailored to tackle this challenge. In turn, this capability is

crucial to enable the deployment of computational models of growth and remodeling

in relevant clinical settings. For instance, tissue expansion protocols are used for a

wide array of patient demographics, from children with large congenital defects [7],

to burn wounds in adults [204], breast reconstruction after mastectomy [105], and

melanoma surgery in older adults [205]. These different patient populations have

distinct skin mechanical properties [67,181,184,185]. In turn, computational models

of skin expansion have to account for this kind of variability to guide decision making

and treatment planning. Here we focused on the effect of age on the stiffness of skin

based on the evidence from the literature. As shown in Fig. 3.8, we are able to make

predictions of the resulting growth probability distributions when the mechanical

properties of the tissue follow realistic normal distributions that vary with age. A key

insight from the analysis is that skin from younger adults is expected to grow more

under the same tissue expansion protocol based solely on its mechanical properties,

but the uncertainty of this result is larger compared to the older adult population.

Continuing with the two different groups in terms of the mechanical response, we

further tested the sensitivity of the growth response to the biological parameters. The
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main insight from this investigation is that, for the specific form of the growth law and

the range of parameters considered, the variation in the biological parameters affects

the transient response, within the first 5 days post-inflation, but has little effect on

the growth contours at day 7 (Fig. 3.9). This kind of knowledge can help design safer

inflation protocols. A more thorough calibration of the model is of course needed, but

our current analysis suggests that waiting 7 days between expansions may be a good

decision to ensure that the skin has reached a stable point before the next inflation.

As mentioned in the introduction, weekly expansions are indeed common [7], but

more aggressive expansion protocols have also been proposed [133].

Our work is not free of limitations. Regarding the construction of the surrogate,

we rely on simulation data alone and assume that these data are noiseless [166,190].

As discussed in [166], introducing noise into the training data set is more represen-

tative of the real system, especially if we are to extend our framework to include

experimental data. Another limitation of our methodology is that the design of the

training data set remains arbitrary and it is thus difficult to anticipate the number of

function evaluations needed to train an accurate surrogate. Further work in this area

is particularly important since one would like to avoid unnecessary evaluations of the

high fidelity model. Thirdly, here we focus on a single inflation step and on a single

expander shape, our future work will extend the analysis to different expander shapes

and inflation protocols. We will also continue to integrate the computational model

with our experimental model of tissue expansion [97]. Lastly, here we used a simple

isotropic material model, the neo-Hookean strain energy, to model skin. In reality,

skin is an anisotropic material [51,180]. We have shown in previous simulations that

anisotropic material properties lead to anisotropic growth fields [176]. We have also

observed this experimentally [115]. Therefore, our future work will also include the

effect of anisotropy on growth and remodeling of soft tissues.



76

3.5 Conclusion

We present a multi-fidelity Gaussian process surrogate to predict the growth of

skin in tissue expansion when the mechanical response and the biological response

are assumed uncertain. The multi-fidelity Gaussian process surrogate outperforms

single fidelity approaches, making it particularly appealing for uncertainty analysis

of biological systems, which are highly nonlinear and for which high fidelity finite

element models are computationally expensive. We expect that the results shown

here will be valuable beyond their application to tissue expansion, for the analysis of

other soft tissues that growth and remodel in relevant clinical scenarios.
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4. THE GEOMETRY OF INCOMPATIBILITY IN

GROWING SOFT TISSUES

Abstract: Tissues in vivo are not stress-free. Moreover, as we grow, our tissues adapt

to different physiological and disease conditions through growth and remodeling. This

adaptation occurs at the microscopic scale, where cells control the microstructure

of their immediate extracellular environment to achieve homeostasis. The local and

heterogeneous nature of this process is linked to the accumulation of residual stresses.

At the macroscopic scale, growth and remodeling can be accurately captured with

the finite volume growth framework within continuum mechanics, which is akin to

plasticity. The multiplicative split of the deformation gradient into growth and elastic

contributions brings forth the notion of incompatibility as a plausible description for

the origin of residual stress. Here we define the geometric features that characterize

incompatibility in biological materials. We introduce the geometric incompatibility

tensor for different growth types, showing that the constraints associated with growth

lead to specific patterns of our incompatibility metrics. To numerically investigate

the distribution of incompatibility measures we implement the analysis within the

finite element framework. Simple, illustrative examples are shown first to explain

the main concepts. Then, numerical characterization of incompatibility and residual

stress in three biomedical applications are performed: brain atrophy, skin expansion,

and cortical folding. Our analysis provides new insights into the role of growth in

the development of tissue defects and residual stresses. Thus, we anticipate that

our work will further motivate additional research to characterize residual stresses in

living tissue and their role in development, disease, and clinical intervention.
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4.1 Motivation

It is well known that soft tissues are not in a stress-free configuration in the human

body [9]. For instance, skin has been shown to have prestrain [115], as well as the

heart and heart valves [127]. Moreover, prestress in arteries actually minimizes the

stress distribution during systole [206]. Beyond arteries, it has been hypothesized that

the state of prestress of different organs yields specific physiological function [207].

To quantify prestrain fields, several experimental techniques have been proposed.

For example, the opening angle experiment of arteries has been adopted as a key

measure of residual deformation [208]. Heart valves have been measured in vivo and

ex vivo to quantify the overall prestrain [209]. Thick slices of whole hearts have been

dissected and then cut to measure the opening of these slices and, by extension, of the

heart [210,211]. Such approaches have further established the existence of prestrain,

but they are incomplete because they reduce the residual strain field to a homogeneous

indicator like the scalar opening angle. The true state of residual deformation may

be more complex [212]. Indeed, there is evidence that tissues develop heterogeneous

patterns of residual deformation during growth [213]. In response to skin expansion,

for instance, the residual deformation of skin changes across the entire expanded

region [116] and significant variation of opening angle along major arteries has been

observed [85]. Thus, although many previous studies have confirmed the existence of

prestrain in living tissue, the precise features and origins of this field are still poorly

understood. Understanding the basic mechanisms that can drive and determine the

development of residual strain in soft tissues has significant implications: it would

allow estimation of the true reference configuration, the true mechanical behavior

of tissues with respect to a stress-free state, and the way in which residual strain

contributes to tissue mechanical function in vivo [11, 12].

Among various theoretical frameworks of growth and remodeling, a phenomeno-

logical description adopted from the theory of plasticity has been particularly success-

ful [147, 148, 214]. In finite deformation plasticity, the deformation gradient tensor
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is multiplicatively split into elastic and inelastic (usually called plastic when rate

sensitivity is neglected) deformations [215]. Instead of a plastic deformation, the

corresponding tensor in biomechanics is denoted growth deformation [123, 216], and

captures addition of mass by changes in volume [217]. The decomposition of the

deformation gradient tensor plays a key role in understanding the origin of residual

stresses at the macroscopic scale. The multiplicative split in fact introduces a geomet-

ric origin to the residual stress [218]. Growth and elastic deformations are in general

incompatible fields, which means they do not derive from a displacement field [219]. If

the growth deformation is incompatible, then an incompatible elastic deformation is

required such the combination of both ensures a compatible total deformation seen in

vivo. In turn, the necessary incompatibility of the elastic deformation is the source of

the residual stress field [220]. In summary, quantifying the incompatibility of growth

fields is intimately linked to the understanding of residual strains and how it may

originate at the microscopic scale.

The notion of incompatibility arising from the multiplicative split of the deforma-

tion gradient is common between plasticity and growth, but the physical mechanisms

leading to incompatibility and the following residual stress are different between en-

gineering materials with crystal structure and living organisms. In crystals, it is

universally acknowledged that plastic deformation occurs through the movement of

a dislocation, which is the most important line defect in crystals [218]. Plastically-

induced misfit between adjacent regions in the crystal results in the change of the

lattice structure [221, 222]. This incompatibility at the atomic level is captured in

the plastic deformation tensor at the macroscopic scale. Defects or imperfections of

the lattice accommodated by the dislocation are connected to the storage of addi-

tional energy and, hence, residual stress [223–225]. Other types of topological de-

fects in crystals can lead to residual stress, for instance quasi-plastic thermal expan-

sion [222,226,227]. In soft tissues, on the other hand, the physical mechanism at the

microscale behind the accumulation of residual stress is still unclear [11]. Previous

studies have proposed intrinsic differences in mechanical properties between adjacent
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structures within the tissue [213], different growth rates leading to unequal material

accumulation [10], microstructure reorganization [85,216], surface accretion [228,229],

and multiple and evolving natural configurations for different constituents [230]. Even

if the precise microscopic origin of the residual stress is still in question, the macro-

scopic observation captured by the framework of finite volume growth condenses the

origin of the residual stress to geometric mismatches in the soft tissue microstructure.

In this manuscript, we quantify the geometric incompatibility that arises during

growth of soft tissue within the finite volume growth framework. This geometric

characterization is linked to the origin of residual stress at the continuum scale. For

our analysis, we rely on some well-established tools from crystal physics, such as

re-interpretation of the Burgers vector and the geometric dislocation density ten-

sor [231, 232]. In plasticity, the Burgers vector explains the geometry of the disloca-

tion density [233–235]. Soft tissues do not accumulate dislocations due to growth, but

we can still use similar geometric analysis to understand the type of incompatibility

possible in growing tissue, and how it may be connected to the accumulation of resid-

ual stress. We derive the form of the local Burgers vector density for representative

scenarios of growth such as volumetric, area, and fiber growth. Moreover, we also

characterize incompatibility and the associated residual stress for relevant biomedical

applications such as human brain atrophy and skin expansion. We believe that our

results will provide new insights and foster discussion about the geometric incompat-

ibility induced by growth, how it is related to microscale phenomena, and how it is

connected to the accumulation of residual stress. Moreover, we anticipate that this

work will not only improve our basic understanding of tissue mechanics, but also be

useful for medical interventions.
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4.2 Methods

4.2.1 Kinematics of growth

Starting from the kinematics of finite deformation, we introduce the functional

relation x = ϕ(X, t) to describe the motion of a body at time t. Let X ∈ B0 ⊂ R3

be a point in the reference configuration, B0. Then ϕ maps X to a point in the

current configuration, x ∈ B ⊂ R3. The map ϕ is continuously differentiable with

respect to X. Thus the local deformation is captured by the deformation gradient

F = ∇0ϕ, which is a linear transformation of points from the tangent space TB0 to

TB. The determinant of the deformation gradient captures the local volume change

J = det(F). Growth in biological tissues can be expressed via the multiplicative split

of the deformation gradient tensor F into growth and elastic components [123],

F = FeFg , (4.1)

where Fg is the growth contribution and Fe is the elastic deformation. The tensor Fg

captures the biological process of tissue adaptation and requires further constraints.

In fact, the form of Fg is not just a kinematic assumption but also a constitutive one.

The split in Eq. (4.1) further implies the split of the local volume change into elastic

and growth components

J = JeJg (4.2)

with Je = det(Fe) and Jg = det(Fg). In a more general scenario, growth can mean

also atrophy or shrinkage and not just addition of mass,

Jg > 1 : growth ,

Jg < 1 : shrinkage .
(4.3)

Of course, both Je and Jg should be positive. At the microscopic level, Jg > 1

can be interpreted, for instance, as cell migration into the tissue, cell proliferation,
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material deposition, or hyperplasia of cells. On the other hand, Jg < 1 can entail cell

necrosis or apoptosis, or material degradation [148].

The first requirement is that Fg should not be singular; then Fe can be recovered

from Eq. (4.1), Fe = FFg−1. Other reasonable assumptions include that Fg should be

symmetric [236, 237]. Further restrictions on Fg are related to particular biological

contexts as will be seen in later sections. The split, see Eq. (4.1), implies the pres-

ence of an intermediate configuration that is stress-free. However, the intermediate

configuration is fictitious and, generally, incompatible. In other words, Fg cannot be

observed in general since the deformation described by this tensor does not originate

from the continuous deformation of a body. At the same time, the elastic deforma-

tion Fe = FFg−1 is, by construction, the necessary incompatible field that renders the

total deformation compatible. In turn, the need for Fe to ensure compatibility even

in absence of any external loading is the source of residual stress.

Let’s further consider the polar decomposition of Fe into

Fe = VeRe = ReUe , (4.4)

where Ve and Ue are elastic left and right stretch tensors and Re is the elastic rotation

tensor. The stress in the current configuration is calculated based on the elastic

deformation Fe. To satisfy objectivity, however, the elastic left and right Cauchy-

Green tensors are used,

Be = FeFe> = VeVe> and Ce = Fe>Fe = Ue>Ue. (4.5)

The stress in the current configuration can be derived in terms of either Be or Ce,

which are independent of the rotation Re. This suggests that the elastic deformation

field needed for compatibility does not always induce stress. If the incompatible

deformation needed is a pure rotation Fe = Re, then the current configuration is still

stress-free. In crystal plasticity, this scenario is the stress-free curvature of the crystal

lattice [238, 239]. An example of this situation for growing tissue will be covered
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in the Results section 4.3. Note also that, if Fg is actually compatible, then in the

absence of any external loading we would recover F = Fg and in that case the elastic

deformation is the second-order identity tensor Fe = I. In other words, if the growth

field is compatible and no forces are applied at the boundary, then there is no residual

stress in the body.

4.2.2 The geometric incompatibility tensor G

As stated above, the deformation gradient tensor is compatible, as it is the gra-

dient of a vector field, while the growth and elastic contributions are not [218]. The

condition of compatibility can be expressed via the Curl(•) operator. For any vector

field v, it is always the case that Curl (Gradv) = 0. The notation Grad(•) denotes the

same operation as ∇(•). Similarly, the Curl can also be represented with the notation

∇ × (•). It is clear that for the total deformation of a body, we have Curl F = 0,

while Curl Fg and Curl Fe are not necessarily zero. Therefore, Curl Fg and Curl Fe

are quantitative indicators for the degree of incompatibility induced by growth or

shrinking. The Curl of a tensor field A is another tensor field defined by

(Curl A)v = Curl(A>v) (4.6)

for all constant vectors v. We use the notation Curl(•) for the operation with respect

to the reference configuration, X, compared to curl(•) which is with respect to the

current configuration, x [232]. In index notation, the components of CurlA are

(Curl A)i j = εirs
∂A js

∂Xr
, (4.7)

where εirs is the permutation symbol. We remark also that our definition of the Curl is

sometimes introduced as the transpose of the Curl in other references and the reader

should be careful about the definition being used [232, 238]. Next, we introduce the

Burgers vector, which measures the gap introduced after deforming a closed circuit



84

on a reference surface by the tensor field Fg. With the help of Stokes’ theorem, the

Burgers vector b can be written in terms of the Curl(•)

b(S0) B
∫
C0

Fg dX =

∫
S0
(Curl Fg)>n0 dA0 , (4.8)

where C0 is the closed circuit on a surface S0(B0), with normal n0 in the reference

configuration. The differential n0dA0 is the surface element in the reference configu-

ration. If Curl Fg = 0, the growth deformation is compatible and the Burgers vector

b vanishes. This is the integrability condition for there to exist a unique vector field

v whose gradient is Fg [225,238]. Failure to satisfy this integrability condition implies

the contrary, that there is no v whose gradient leads to Fg.

The Burgers vector in crystal physics measures the geometry of a dislocation. On

the other hand, the Burgers vector in Eq. (4.8) for growing tissues can be interpreted

as a mismatch in the geometry between two adjacent surface elements that occurs

because growth is non-uniform in general. For example, imagine more material is

deposited in one small element compared to an adjacent microscopic volume. Upon

growth, the initially closed circuit that traverses these two areas would not be closed

anymore. The resulting gap length of the mismatch is uniquely given by the Burgers

vector. Note that this picture does not capture the molecular mechanism of the

incompatibility. We restrict our incompatibility density measure to the continuum

scale.

The Burgers vector defined over the small region S0 can be localized [232]. In

addition, the Burgers vector actually lies in the intermediate configuration, but the

variable of integration in Eq. (4.8) is defined in the reference configuration. Using

Nanson’s formula, we can express the localized Burgers vector completely in terms of

quantities in the intermediate configuration

(Curl Fg)>n0 dA0 =
1

Jg
(Curl Fg)>Fg> n̄ dĀ , (4.9)
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where n̄ dĀ is the surface element in the intermediate configuration with normal n̄.

Therefore, Eq. (4.9) evaluates the incompatibility due to growth or shrinkage on a

surface with normal n̄ at a point in the intermediate configuration. To capture the

incompatibility in all possible directions, we now introduce the central geometric

object in this paper: the geometric incompatibility tensor G [232],

G =
1

Jg
FgCurl Fg . (4.10)

The local Burgers vector density can now be computed for any direction n̄ using

G,

b B G>n̄ . (4.11)

Strikingly, it should be possible to quantify the amount of incompatibility without

knowing the growth field. Consider the following thought experiment: A body in the

current configuration is unloaded and broken up into smaller and smaller pieces.

As constraints are released and the body is split into differential volume elements

that each approach a stress-free state, we would recover the incompatible elastic

deformation field Fe. Knowledge of this field alone should be sufficient to determine

the residual stress in the body B. Indeed, G can be derived from Fe via [233,235]

G = JeFe−1curl Fe−1 . (4.12)

The equivalence between Eqs. (4.10) and (4.12) can be evaluated using Eqs. (4.1)

and (4.2).

4.2.3 Constraints on the growth field determine the geometry of incom-

patibility

As mentioned before, the specific form of Fg is both a kinematic and a constitutive

assumption. In particular, the restrictions in the tensor Fg should reflect the connec-
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tion between growth and tissue microstructure. Here we focus on three representative

growth models: volume, area, and length (or fiber) growth [147]. Additionally, the

tensor Fg can be expressed in terms of scalar fields directly linked to mass sources.

The scalar field for growth is denoted by ϑg throughout this manuscript. The added

structure for Fg leads to interesting properties of the geometric incompatibility tensor

G which are unique to growing soft tissue.

Isotropic volume growth

The simplest and most natural growth model is isotropic volume growth. This

corresponds, for instance, to cell proliferation or deposition of new tissue without any

preferred orientation. A common example of this type of growth is tumor growth

[240,241]. We have

Fg B
3
√
ϑgI , (4.13)

where ϑg is a scalar field that represents local volume change due to growth, and I

is the second-order identity matrix. The evolution of ϑg should obey a constitutive

equation representing cell mechanobiology. The Curl operation for this tensor leads

to

(Curl Fg)i j = εirs

∂Fg
js

∂Xr
=
∂

3
√
ϑg

∂Xr
εirsδ js =

∂
3
√
ϑg

∂Xr
εir j . (4.14)

Alternatively, in tensor notation,

Curl Fg =
1

3
3
√
ϑg2

?∇ϑg = 1

3
3
√
ϑg2
(∇ϑg × ei) ⊗ ei , (4.15)

with?(•) denoting the Hodge star operator, and ei are the standard orthonormal basis

vectors. For isotropic volume growth, using Eq. (4.15) and recalling the definition of

the geometric incompatibility tensor in Eq. (4.10), we find that G is a skew-symmetric
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tensor and the matrix form corresponding to the choice of the standard Cartesian basis

is

G =
1

3
3
√
ϑg4


0 −ϑg,X3

ϑ
g
,X2

ϑ
g
,X3

0 −ϑg,X1

−ϑg,X2
ϑ
g
,X1

0


, (4.16)

where ϑ
g
,X1

, ϑ
g
,X2

, and ϑ
g
,X3

are the partial derivatives of ϑg with respect to the reference

configuration coordinates.

Considering Eq. (4.11), each local Burgers vector density for the standard basis

in 3D Euclidean space is, in matrix form,

b1 = G>e1 =
1

3
3
√
ϑg4
(0, −ϑg,X3

, ϑ
g
,X2
)> ,

b2 = G>e2 =
1

3
3
√
ϑg4
(ϑg,X3

, 0, −ϑg,X1
)> ,

b3 = G>e3 =
1

3
3
√
ϑg4
(−ϑg,X2

, ϑ
g
,X1
, 0)> .

(4.17)

Recall that these Burgers vectors bi measure the incompatibility on planes defined

by the basis vectors ei. Thus, here we see that for isotropic growth, there is no incom-

patibility orthogonal to the plane of interest. In other words, for the plane defined

by each ei, the local Burgers vector density is restricted to that plane. Contrast this

with crystals, where screw dislocations are possible and entail defects in the direction

of the normal vector [242]. Another key insight from analyzing incompatibility in the

context of growth and remodeling is that we have a direct connection between the gra-

dients of growth and incompatibility. For instance, if the growth is uniform (that is,

if ϑ
g

,X
= 0) then it is clear that G vanishes. Another useful example would be growth

that only varies in one direction, for instance X1. In that case, b1 vanishes completely

and there is no incompatibility in planes defined by the growth gradient. We actually

explore this example further in the Results section 4.3. We also investigate a brain

atrophy model [243] where shrinkage of white and gray matter leads to local growth

gradients and, in consequence, residual stresses from incompatibility [244].
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Transversely isotropic area growth

Transversely isotropic in-plane area growth is applicable for thin tissues in which

there is area growth while the thickness remains unchanged [245]. An important

example of area growth is that of skin in tissue expansion [246]. Computational

models of skin growth based on the multiplicative split of the deformation gradi-

ent have been shown to accurately capture animal experiments and patient-specific

scenarios [80, 131]. The growth deformation tensor for area growth takes the form

Fg B
√
ϑgI + (1 −

√
ϑg)N0 ⊗ N0 , (4.18)

where N0 is the tissue normal vector in the reference configuration. Eq. (4.18) inher-

ently restricts volume change to permanent changes in area while keeping thickness

deformations purely elastic. The determinant of Eq. (4.18), which is the total volume

of new tissue, is also the local area change. The Curl operation in this case can be

expressed in tensor notation as

Curl Fg =
1

2
√
ϑg
(∇ϑg × ei) ⊗ ei −

1

2
√
ϑg
(∇ϑg ×N0) ⊗ N0 . (4.19)

The geometric incompatibility tensor for area growth can be computed from Eqs.

(4.19) and (4.10). For completeness, in index notation this tensor takes the form

Gi j =

(
1
√
ϑg
δim +

(
1

ϑg
− 1
√
ϑg

)
N0iN0m

)
εmrs

∂Fg
js

∂Xr
. (4.20)

Similar to the isotropic case, incompatibility occurs due to gradients in the per-

manent area change, as is evident from Eq. (4.19). Having G, we can determine

the Burgers vector density in any direction. To that end, the most relevant plane is

defined by N0 or, more rigorously, the normal N̄ in the intermediate configuration.
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For this particular type of growth we have N̄ = N0. The local Burgers vector density

G>N̄ becomes

b = G>N̄ =
1

2
√
ϑg3
(sα ⊗ (∇ϑg × sα))N̄, (4.21)

where the vectors sα, with α = {1, 2}, are the local basis for the surface defined by

N̄. We observe again that the Burgers vector corresponding to the plane defined by

N̄ is restricted to that plane and will have only components along the sα directions.

Moreover, if the gradient is aligned with any of the surface basis vectors, then the

expression can be further simplified. For instance, assume, without loss of generality,

that ∇ϑg is aligned with s2 and denote s1 = s as the vector orthogonal to the in plane

growth gradient. Then,

b =
|∇ϑg |
2
√
ϑg3

s . (4.22)

This last expression condenses the key type of incompatibility of area growth.

Since the local basis can always be aligned with the direction of the growth gradient,

Eq. (4.22) shows that the incompatibility is orthogonal to the growth gradient and

its magnitude is proportional to the magnitude of the growth gradient scaled with

respect to the amount of growth.

Uniaxial Fiber growth

In tissues such as muscle, growth can occur along the fiber direction [247,248]. In

addition, axons in the white matter of the brain also show lengthwise growth induced

by chronic overstretch during development [249]. Cortical folding of the brain is

a phenomenon that occurs in part due to mechanical instabilities triggered by this

type of growth coupled to biological factors [250]. The heart also has a unique and
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well-defined fiber structure along which growth can occur, especially due to volume

overload. For growth along the fiber direction, Fg is defined as

Fg B I + (ϑg − 1)f0 ⊗ f0 , (4.23)

where f0 is the fiber direction in the reference configuration. The determinant of

Eq. (4.23) explains that the volume change in fiber growth is now related to the

irreversible change in length along the fiber direction.

For this specific type of growth tensor, the Curl operator leads to an elegant form

Curl Fg = (∇ϑg × f0) ⊗ f0. (4.24)

The incompatibility tensor can then be computed based on its definition G =

1/ϑgFgCurl Fg. For completeness, we write it in index notation,

Gi j =

(
1

ϑg
δim + (1 −

1

ϑg
) f0i f0m

)
εmrs

∂ϑg

∂Xr
f0 j f0s . (4.25)

For fiber growth, fiber direction is unchanged in the intermediate configuration,

f̄ = f0. The local Burgers vector density in the plane defined by the fiber direction f̄

is

G>f̄ =
1

ϑg
f0 ⊗ (∇ϑg × f0)f̄ = 0 . (4.26)

Thus, in the case of fiber growth, there cannot be incompatibility in the direction

of the fiber. More interesting are the planes orthogonal to the fiber. Also from

Eq. (4.24) it can be seen that if the gradient of growth is aligned with the direction of

the fiber there is also no incompatibility. Consider the unit vector in the intermediate

configuration m̄, which is locally orthogonal both to the growth gradient and the fiber

direction. Then, the local Burgers vector density for the plane defined by m̄ is

G>m̄ =
|∇ϑg | sin(β)

ϑg
f0 , (4.27)
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where β is the angle between the growth gradient and the fiber direction. Therefore,

the incompatibility for fiber growth is aligned with the fiber direction, and the mag-

nitude of the Burgers vector is proportional to the magnitude of the growth gradient

and inversely proportional to the amount of growth. As stated before, if the growth

gradient is aligned with the fiber direction, the Burgers vector vanishes. On the con-

trary, the Burgers vector will have maximum magnitude when the growth gradient is

orthogonal to the fiber direction.

In the Results section 4.3, we present examples for each of the three above-

shown cases. First, we illustrate the effect of a specific form of the growth tensor

in Eqs. (4.13), (4.18), and (4.23) on the resulting patterns of incompatibility. Second,

we characterize incompatibility and residual stresses for the examples of skin growth

during tissue expansion, brain atrophy, and cortical folding due to axon fiber growth.

Overall, the notion of the geometric incompatibility tensor G takes on specific fea-

tures for growing soft tissues described with the finite growth framework. While we

limit the present work to this geometric description, the characteristics of G and the

Burgers vector for the different growth cases raises intriguing questions about the

possible microscopic and molecular origins of these phenomena.

4.2.4 Balance equations for growing soft tissues

Growth requires considering the thermodynamics of open systems, as carefully

outlined in [236]. Under the assumption of a quasi-static process, balance equations

for linear momentum akin to plasticity are derived. For completeness, we review the

mass specific format of the balance equations in the Lagrangian form, similar to [251].

Balance of mass

Let the density of the mass element in the reference configuration be ρ0 and its

rate of change Ûρ0. We remark that ρ0 is the current density of the material but pulled

back to the reference configuration. Then the local form of balance of mass for open
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systems (growing tissues in our setting) implies the possible influx or outflux of mass

R and a possible mass source R0 term [252],

Ûρ0 = ∇0 · R + R0 . (4.28)

The mass change of growing matter can occur at constant density or constant

volume. In the framework of finite volume growth, the density-preserving notion is

implied [217]. In consequence, the mass source will be linked to the time evolution of

Fg.

Balance of linear momentum

The local form of balance of linear momentum for the open systems is obtained

by considering Ûρ0 in the Lagrangian equations of motion such that

Ûρ0v + ρ0 Ûv = ∇0 · P + ρ0f , (4.29)

where v is the velocity vector, P is the first Piola-Kirchhoff stress, and f is the body

force field. Under quasi-static conditions and neglecting the mass flux, R = 0 and

Ûv = 0, Eq. (4.29) can be simplified considerably,

0 = ∇0 · P + ρ0f . (4.30)

Balance of entropy

Local balance of entropy is enforced through the Clausius-Duhem inequality. For

an open system, the local form of the dissipation inequality D ignoring temperature

changes [80] can be stated as

ρ0D B S : ÛE − ρ0 Ûψ − T ρ0S0 ≥ 0 , (4.31)
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where S = F−1P is the second Piola-Kirchhoff stress, ÛE is the rate of the Green-

Lagrange strain tensor, Ψ = ρ0ψ is the volume specific free energy density, T is

temperature, and S0 is an external entropy source [253]. For growing tissues, it is

common to assume that added mass does not contribute to additional entropy and

S0 = 0. Hence, neglecting any dissipative mechanisms, Eq. (4.31) reduces to the

standard definition of the second Piola-Kirchhoff stress as the derivative of the strain

energy with respect to its work-conjugate Green-Lagrange strain tensor E,

S = ρ0
∂ψ

∂E
. (4.32)

To close this section on the balance equations of growth, we establish the rela-

tionship between the mass balance Eq. (4.28) and the growth tensor Fg. Consid-

ering that the density in the current and intermediate configurations is constant,

ρg = ρ = const [236], we have ρg = jgρ0 with jg = Jg−1, then

Ûρg = Ûjgρ0 + jg Ûρ0 = 0 . (4.33)

In addition, recall that we ignore the mass flux term. Then, Eqs. (4.28) and (4.33)

yield

Ûρ0 = −ρ0Jg Ûjg = −ρ0Jg
∂ jg

∂Fg−1 : ÛFg−1 = −ρ0Fg> : ÛFg−1 , (4.34)

where we have introduced the growth velocity tensor Lg = ÛFgFg−1 [217]. Using

ÛFgFg−1 = −Fg ÛFg−1 we have

ρ0tr(Lg) = R0 , (4.35)

which is the link between the mass source field and the growth tensor field.
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4.2.5 Constitutive model for soft tissue mechanics

We consider hyperelastic behavior, which is a common framework for modeling

soft tissues. This requires the definition of the volume specific free energy density

which depends only on the elastic deformation, Ψ = ρ0ψ̂(Fe, ρ0) = Ψ(Ce). Moreover,

the strain energy can be written in terms of the invariants of Ce, Ψ = Ψ(Ie
1, Ie

2, Ie
3).

Two different models are considered. First, we introduce a compressible neo-Hookean

hyperelastic potential of the form

Ψ =
µ

2
(Ie
1 − 3 − 2 ln(Je)) + λ

2
ln2(Je) , (4.36)

where Ie
1 = tr(Ce) = tr(Be) is the first invariant of Ce and Be, Ie

3 = det(Ce) = det(Be) =

Je2 is the third invariant of Ce and Be, and µ and λ are the shear modulus and Lame’s

first parameter, respectively. The second Piola-Kirchhoff stress tensor follows

Se = 2
∂Ψ

∂Ce = (λ ln(Je) − µ)Ce−1 + µI . (4.37)

Alternatively, Kirchhoff stress is given by

τe = 2Be ∂Ψ

∂Be = (λ ln(Je) − µ)i + µBe , (4.38)

where i is the spatial second-order identity tensor. The rationale for introducing both

the Lagrangian and the Eulerian stress tensors is that the finite element implemen-

tation can be formulated for either setting. Obviously, both expressions of the stress

are equivalent.

Many soft tissues are characterized by a high degree of collagen content [43].

Collagen is the most common structural protein in animals. It is observed in the

microstructure of tissues as a fiber network [254, 255]. Mechanically, this fibrous

architecture endows tissues with a characteristic exponential behavior under tensile

loading [178]. Among several hyperelastic strain energy potentials that capture this
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response, we employ the one proposed by Gasser-Ogden-Holzapfel (GOH) showing

nearly incompressible hyperelastic and anisotropic behavior [57],

Ψ = Ψiso(C
e) + Ψaniso(C

e
,Hα) + Ψvol(Je) with

Ψiso(C
e) = µ

2
(Ie

1 − 3) ,

Ψaniso(C
e
,Hα) =

k1
2k2
(exp (k2〈Eα〉2) − 1) , and

Ψvol(Je) = λ
2

(
Je2 − 1

2
− ln(Je)

)
,

(4.39)

where I
e
1 = Je− 2

3 Ie
1 is the first invariant of C

e
, the isochoric part of Ce, and Eα ≡ C

e
:

Hα − 1 is the pseudo-invariant with respect to the symmetric generalized structure

tensor Hα = κI + (1 − 3κ)aα ⊗ aα with fiber direction aα = Fga0α/|Fga0α | in the

intermediate configuration, a0α in the reference configuration. The notation 〈·〉 in

Eq. (4.39) denotes the Macaulay brackets. The parameters k1, k2, and κ capture the

response of the fiber family: k1 describes the tensile response, k2 is dimensionless and

expresses nonlinearity of the fiber response, and κ is another dimensionless parameter

that indicates dispersion in the range 0 to 1/3, from perfectly anisotropic to perfectly

isotropic. The second Piola-Kirchhoff stress tensor of GOH potential can be derived

from the strain energy,

Se = 2
∂Ψiso
∂Ce + 2

∂Ψaniso
∂Ce + 2

∂Ψvol
∂Ce

= µ
∂I

e
1

∂Ce + 2k1〈Eα〉 exp
(
k2〈Eα〉2

)
Je− 2

3P :
∂Eα

∂C
e +

λ

2

(
Je − 1

Je

)
∂Je

∂Ce ,

(4.40)

where

P = I − 1

3
Ce−1 ⊗ Ce = I − 1

3
C

e−1 ⊗ C
e
, (4.41)
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is the fourth order projection tensor, with I = 1
2 (I⊗I + I⊗I) the fourth-order identity

tensor, {•⊗◦}i j kl = {•}ik{◦} jl and {•⊗◦}i j kl = {•}il{◦} j k . The derivatives in (4.40)

can be expanded further,

∂I
e
1

∂Ce = Je− 2
3

(
I − 1

3
I

e
1C

e−1
)
,
∂Eα

∂C
e = Hα, and

∂Je

∂Ce =
Je

2
Ce−1 . (4.42)

The corresponding Kirchhoff stress can be obtained by pushing-forward the second

Piola-Kirchoff stress tensor,

τe = FeSeFe> = µ(Be−1

3
I

e
1i)+2k1〈Eα〉 exp (k2〈Eα〉2)Je− 2

3 (hα−
1

3
(Ce

: Hα)i)+
λ

4
(Je2−1)i ,

(4.43)

where B
e
= Je− 2

3Be is the isochoric part of Be and hα = F
e
HαF

e>
= κB

e
+(1−3κ)aα⊗aα

is the push-forward of the symmetric generalized structure tensor of Hα with aα =

F
e
aα = Je− 1

3Feaα is the fiber vector in the current configuration.

4.2.6 Constitutive model for growth

Continuing directly from Eq. (4.35) the rate of change of mass dictates the change

in Fg. Furthermore, recalling the different types of growth, the rate of change in mass

can be directly linked to the evolution of the scalar field ϑg. The constitutive equation

for the rate of change of this scalar field, Ûϑg, is often coupled to either mechanical

cues, or to biological processes independent of mechanical input [145]. Mechanically-

coupled growth is separated into stress-driven [217] or strain-driven [131] approaches,

Ûϑg = kg(ϑg, ϑe)φg(Me) or Ûϑg = kg(ϑg, ϑe)φg(Fe) , (4.44)

where Me = CeSe is the Mandel stress which is the power conjugate to Lg [256], and

φg(·) is the growth criterion that activates growth based on whether the stress or

strain exceeds a certain threshold. The function kg(ϑg, ϑe) dictates the shape of the
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curve. An overview of different functions for kg(ϑg, ϑe) and φg(·) are available in the

literature [80,98,257,258]. For example, the strain-driven approach from [175] is

kg(ϑg) = 1

τ

(
ϑmax − ϑg
ϑmax − 1

)γ
and

φg(ϑe) = 〈ϑe − ϑcrit〉 = 〈 ϑ
ϑg
− ϑcrit〉 ,

(4.45)

where τ−1 adjusts the adaptation speed, ϑmax is the upper limit of growth, γ regulates

the shape of the growth curve, and ϑcrit controls the homeostatic state [145]. We have

recently proposed a growth rate curve with saturation as the input increases [98].

Using a Hill function to control the growth rate with saturation at increasing ϑe we

have

Ûϑg = k(ϑe − ϑcrit)n
Kn + (ϑe − ϑcrit)n

(4.46)

with biological parameters k, K, and n [98].

On the other hand, non-mechanically coupled growth is also relevant, for instance

during morphogenesis or development. In these situations, the growth rate could be

coupled to biological factors or cytokines [83]. Here we do not couple the growth field

to other inputs but only deal with prescribed functions of growth as a function of

time and location

ϑg = 1 + R(X, t). (4.47)

4.2.7 Finite element implementation

The numerical implementation of the examples shown in the following sections was

achieved by programming a user subroutine in the nonlinear finite element package

Abaqus (Dassault Systems, Waltham, MA), similar to [175].

The global problem of finding the displacements incrementally is left to the Abaqus

nonlinear solver. Our user subroutine is used at the integration point level. For each
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integration point, we keep an internal variable with the value of the growth field ϑg at

the end of the previous converged step. The integration point subroutine takes in the

current total deformation F and updates ϑg. For the mechanically-coupled growth

problem, ϑ
g
t+∆t is determined by an implicit Euler backward scheme

Rg = ϑ
g
t+∆t − ϑ

g
t − Ûϑg∆t , (4.48)

where Rg is the residual of the local growth update problem, and ϑ
g
t+∆t and ϑ

g
t are

the growth values at the integration point at the current and previous time steps,

respectively. Eq. (4.48) is solved via Newton-Raphson iterations [175]. Once growth

has been updated, the elastic deformation is calculated from Fe = FFg−1, and the

corresponding stress is evaluated.

The global Newton-Raphson iterations carried out by the Abaqus solver require

the stress tensor and the consistent tangent. Thus, our user subroutine first calculates

the fourth order Eulerian tangent c by linearization of the elastic Kirchhoff stress in

Eqs. (4.38) or (4.43) with respect to Be,

c = 4Be ∂2Ψ

∂Be∂Be Be = ce + cg , (4.49)

where ce corresponds to the partial derivative when Fg is held constant, and it cor-

responds to the usual elastic constitutive moduli. In contrast, cg is the derivative at

constant F. For the non-mechanically coupled growth problem defined in Eq. (4.47),

ϑg is a function of the reference position and time only, and cg = 0. For an overview of

the specific form of cg for different growth formulations, the reader is referred to [259].

The tangent c is further modified to obtain the tangent corresponding to the

Jaumann stress rate used in Abaqus: cabaqus = (c + 1
2 (τ⊗i + i⊗τ + τ⊗i + i⊗τ))/J. The

user subroutine allows us to solve for the evolving deformation of the growing body.

During postprocessing, we use the shape functions to interpolate Fg and calculate the

geometric incompatibility tensor G in Eq. (4.10). Code for the different examples is

also attached as part of this submission.
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4.3 Results

We first quantify the incompatibility in four illustrative examples in which the

growth field is entirely prescribed, i.e., it is not coupled to any mechanical input.

The growth fields for these examples are summarized in Table 4.1. The examples

are chosen to show the features of each type of growth and also the consequences of

seeing different characteristics for the gradients of growth across the body. For each of

these cases we compute the metrics of incompatibility defined in the Methods section,

and show the corresponding residual stress when no other external forces are applied

to the body. Next, we turn our attention to mechanically-coupled growth examples

which correspond to relevant biomedical applications. The first of these examples is

brain atrophy which involves volume growth. The second is skin expansion where

area growth is considered. The last example is cortical folding of the brain with fiber

growth based on axonal orientation.

Table 4.1.: Kinematics of growth for non-mechanically coupled examples

Growth type Growth tensor Growth indicator

(unidirectional field)
Isotropic volume growth

Fg =
3
√
ϑgI ϑg = 1 + 1

4X1t

(multi-directional field)
Isotropic volume growth

Fg =
3
√
ϑgI ϑg = 1 + 1

4 f (R)t, R =
√

X2
1 + X2

2 + X2
3

Area growth Fg =
√
ϑgI + (1 −

√
ϑg)N0 ⊗ N0 ϑg = 1 + 1

4 f (R)t, R =
√

X2
1 + X2

2

Fiber growth Fg = I + (ϑg − 1)f0 ⊗ f0 ϑg = 1 + 1
4X2t

4.3.1 Isotropic volume growth driven by a unidirectional field

We start with the simplest example for non-mechanically coupled isotropic volume

growth. The domain of 1 × 1 × 1 mm is discretized with 1, 000 C3D8 elements and

the growth variable ϑg is prescribed as a function of time and space

ϑg B 1 +
1

4
X1t (4.50)
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with time t ∈ [0, 1]. This function leads to a 25% volume increase across the domain

(Fig. 4.1a). The growth field is non-uniform and, furthermore, it changes only in one

direction. The rationale for this field is to isolate a simple pattern of growth that can

be caused by a morphogen gradient for example.

The finite element model has 1, 331 nodes and we constrain only three translations

and three rotations in order to allow free deformation except for rigid body motions.

No natural boundary conditions are applied. For the material behavior we consider

Fig. 4.1.: Continued on the following page.
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Isotropic growth guided by a unidirectional field. Finite element model of a simple
cube deforms in response to a linear growth field, ϑg, with respect to the X1 direction
(a). Based on this growth field, the invariant of the incompatibility tensor Curl Fg :
Curl Fg is obtained (b). There are only six constraints to prevent rigid body motion,
but elastic free energy accumulates across the domain due to the incompatibility of
the growth field (c). The local Burgers vector density b is derived with respect to the
standard basis in 3D Euclidean space, n̄ (d). The arrows in (d) are scaled relative to
the magnitude of |b|. For n̄ along the X1 direction, there is no incompatibility. For
the other two directions, b lies on the plane defined by n̄ and orthogonal to the growth
direction. The magnitude of |b| shows an inverse trend compared to the growth value
ϑg (e). The components of second Piola-Kirchhoff stress, S33 and S22, are matched
with the local Burgers vector direction in (d) respectively when n̄ is not X1 direction
(second and third in f), while S11 is plotted when there is no local Burgers vector (first
in f). The free energy density and the invariant Curl Fg : Curl Fg are also plotted (g),
showing that while incompatibility decreases along X1, the strain energy is highest at
the boundary, with another local maximum at the center of the domain.
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the neo-Hookean hyperelastic potential introduced before, with µ = 0.55 MPa [98]

and the initial compressibility ν = 0.4. Upon growth, the cube of material deforms

solely due to growth into the configuration depicted in Fig. 4.1a. The contour plot

in this panel is the growth variable ϑg, showing the desired gradient along X1.

The amount of incompatibility can be boiled down to the single invariant Curl Fg :

Curl Fg, which is motivated by similar scalar fields in gradient plasticity related to

energy stored as a consequence of crystal defects [224, 225]. While in our case the

scalar field does not correspond to an energy quantity, it is an invariant field which

overall relates to the degree of incompatibility and is therefore useful to visualize.

The scalar Curl Fg : Curl Fg changes in the same direction of the gradient of ϑg

(Fig. 4.1b), which matches the intuition that incompatibility is related to mismatch

between adjacent differential volumes with different growth. Note, however, that even

though the gradient of the volume change is constant, the incompatibility metric is

not. This occurs because even though the volume growth increases linearly with X1,

the growth tensor is actually not a linear function of ϑg. To achieve volume growth

of ϑg, a differential volume element has to grow
3
√
ϑg in all directions.

The local Burgers vector density b can be calculated for any plane in the inter-

mediate configuration. We choose the standard basis in 3D Euclidean space as the

normals of interest, e.g., n̄ = Fge1/|Fge1 | and so on for the other two directions (Fig.

4.1d). For the plane corresponding to the growth gradient, n̄ = Fge1/|Fge1 |, the

Burgers vector vanishes. This occurs because on the plane orthogonal to the growth

gradient, growth is uniform and therefore compatible. This follows directly from the

definition of Curl Fg in Eq. (4.15). The local Burgers vector density in the other two

planes is restricted to the corresponding plane. This was noted in the derivation of

G for the different growth types. In the case of isotropic growth fields it is always

true that n̄>Gn̄ = 0 for any normal n̄. In this example it also becomes evident that

b is orthogonal to the growth gradient. The magnitude of the local Burgers vector

density |b| is also not constant over the domain (Fig. 4.1e). Instead, maybe albeit

surprisingly, the magnitude is greater in the region with least growth, and decreases
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as growth increases. This can be explained by the fact that G is scaled by the deter-

minant of the permanent volume change. Even though on one end of the cube the

growth is small, the relative difference in the differential volume elements is greater

in these regions compared to the relative mismatch in size between adjacent volume

elements that have undergone more substantial growth.

To visualize the consequences of nonuniform growth on the development of residual

stress, the second Piola-Kirchhoff stress tensor S is represented along each of the b

directions in Fig. 4.1d and the result is depicted in Fig. 4.1f . (For the first panel of

Fig. 4.1f , since the Burgers vector is not defined, we showed the first component of the

second Piola-Kirchhoff stress S11.) There are residual stresses in all three directions.

The magnitude of the stress is not necessarily aligned with the magnitude of the local

Burgers vector density. To get a better understanding of how the elastic deformation

is distributed, Fig. 4.1c shows the contours of the elastic strain energy, and Fig.

4.1g compares the elastic strain energy against the scalar invariant of incompatibility

Curl Fg : Curl Fg.

The mechanical equilibrium problem that gives rise to Fe is not trivial. Even when

no external forces are considered and the only driver for Fe is the incompatibility of

Fg, the elastic deformation Fe has not just lead to compatibility Curl F = 0, but

also minimize Ψ (which is a nonlinear function of Fe) and satisfy the vanishing of

the normal stress at the boundaries. As a result, even though the geometry of the

incompatibility has the elegant and simple features expected based on the analytical

derivation Eq. (4.16), the stress field is more intricate. Take the first component of

the second Piola-Kirchhoff stress S11 shown in the first column of Fig. 4.1f . The

stress on the faces with normal e1 or −e1 have zero stress, as required. Along the

other two directions, the stress goes from tension at the boundary to compression at

the center. Similar trends are observed for the other two components, S33 and S22

(second and third columns of Fig. 4.1f).
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4.3.2 Isotropic volume growth driven by a multi-directional vector field

In the second example we consider a half sphere with radius R0 = 1 mm discretized

with 1, 920 C3D8 elements and 2, 300 nodes. Material properties, boundary condi-

tions, and the range of ϑg are the same as in the previous example, but in this case we

consider radial growth as stated in Table 4.1. The amount of growth is a monotonic

increase function of the variable R =
√

X2
1 + X2

2 + X3
3 . This example is motivated

by evidence that tumors grow more at the outer layers which have more access to

nutrients compared to the core of the tumor which may even be necrotic [240]. In

the simplest case, we consider once again the linear increase in growth rate Ûϑg = 1
4R.

However, we also consider other functions of ϑg(R) that are nonlinear, either concave

or convex (Fig. 4.2f). In particular, Fig. 4.2a shows two different growth fields;

in one case growth increases slowly near the core and more rapidly near the outer

surface, while in the other case we have a very rapidly increasing growth near the

core compared to near the outer surface.

To analyze the incompatibility we focus on the spherical basis vector field n̄r , n̄φ,

and n̄θ , called radial, meridional, and circumferential respectively. As can be expected

based on the previous example and the derivation for Curl Fg in Eq. (4.15), the local

Burgers vector density vanishes for the planes defined by the growth gradient n̄r .

The growth is uniform within each concentric sphere forming the tumor and there

is no incompatibility in the infinitesimal area elements making up these spheres.

Incompatibility arises from the mismatch in growth between different concentric layers

of the tumor. The local Burgers vector density b is shown for the other two directions

of interest in Fig. 4.2b and c. When the plane of interest for the characterization of

the Burgers vector is defined by the normal n̄φ, b is circumferential, and for n̄φ b is

meridional. This observation, again, aligns with the remarks of the previous example

and with the derivation of G in Eq. (4.16).

The nonlinearity of the growth rate translates to the degree of incompatibility. In

particular, the magnitude of the local Burgers vector density |b| is proportional to the
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Fig. 4.2.: Isotropic volume growth guided by a multi-directional field with different
growth distributions. an increasing gradient of ϑg from the inner core to the outer shell
(a, left) and a case in which ϑg increases rapidly at the core and slowly at the outer
layers (a, right). The local Burgers vector density is computed for each of the two
cases and for planes defined by the spherical basis vector corresponding to meridional
and circumferential directions n̄φ and n̄θ . (b, c). The Burgers vector vanishes for
planes defined by the radial direction n̄r and are thus not shown. (Continued on the
following page.)
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Stress components aligned with the direction of the Burgers vectors show similar
trends to the degree of incompatibility for the two cases considered (d, e). The
growth fields considered, in addition to the two cases illustrated in the top panels,
are shown in f, were the blue curve is the case shown in the left column of a, and the
red curve is the right column of a . The magnitude of the local Burgers vector density
|b| is greater for higher growth gradients, but also greater for smaller growth values
(g). The scalar metric Curl Fg : Curl Fg shows the same trends as the magnitude of
the local Burgers vector density (h).
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magnitude of the growth gradient. Note that if the growth increases rapidly at the

core compared to the outer region, the magnitude of the local Burgers vector density

is higher at the core and decreases toward the outer layers as the growth gradient

decreases (red curve in Fig. 4.2g). In contrast, when the growth shows an increasing

gradient with respect to R, |b| increases with respect to R as well. Compare this to

the case in which growth rate is constant across the tissue. In such case, there is still

a small variation in b as a function of R because, as discussed before, the magnitude

of growth also contributes to b. However, the scaling of b by the growth amount is

barely noticeable when compared to the effect of the nonlinear functions ϑg(R) with

large gradients |∇0ϑg | relative to the growth ϑg.

Residual stresses in the absence of any traction or body force align with the

incompatibility as characterized by the local Burgers vector density. For instance,

for the case in which growth is slower at the core compared to the outside, the

circumferential and meridional components of the Cauchy stress tensor (Fig. 4.2d)

show radial patterns aligned with the features of the b field in Fig. 4.2d. Similarly,

residual stresses follow the observations of the local Burgers vector density for the case

in which growth is faster at the core compared to the periphery (Fig. 4.2e). In either

case, there is a transition from tension to compression along the radial direction,

which has also been shown in [240].

To reduce the incompatibility characterization to a single invariant scalar field,

we once again opt for Curl Fg : Curl Fg, plotted with respect to R in Fig. 4.2h. The

trends are similar to what happens with the local Burgers vector density: higher

gradients of growth lead to higher incompatibility in general, while for the same

gradient higher growth leads to less incompatibility. When compared to the previous

example, it is obvious that the same amount of overall growth produced by some field

ϑg can lead to very different residual stresses depending on the gradient ∇0ϑg.
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4.3.3 Transverse isotropic area growth

Thin biological membranes and epithelial tissues also undergo growth and remod-

eling during development and in response to environmental cues [152]. For instance,

skin grows in development, in response to our body weight, and in pregnancy [136].

The knowledge that skin responds to stretch by growing has been leveraged for the

clinical application of tissue expansion [106]. Computational models of skin growth

within the volumetric growth framework have been shown to accurately capture the

clinical scenario using a transversely isotropic in-plane area growth [131]. Before we

consider a more realistic problem, we first explore the case of a disc with prescribed

area growth

ϑg B 1 +
1

4
Rt (4.51)

where R =
√

X2
1 + X2

2 is the radial coordinate on the plane and t ∈ [0, 1] is time. The

corresponding growth tensor Fg for area growth is given Eq. (4.18), and in this case

the normal is simply N0 = e3. We partition a flat disc or radius R0 = 1 mm and

height h = 0.5 mm into 2, 080 C3D8 elements and 2, 808 nodes (Fig. 4.3). The growth

contour ϑg is shown in (Fig. 4.3a). The boundary conditions, time for the simulation,

and resulting range of the growth indicator ϑg are the same as in the previous two

examples, but the constitutive model is now different. For this problem we consider

the anisotropic GOH model.

Two kinds of fiber orientation are considered, radial and circumferential. With

this example we want to further illustrate that the development of residual stress is

linked to both the need for an incompatible Fe that balances out the incompatibility

introduced by Fg, as well the mechanical equilibrium problem, which depends on

the specific constitutive model. The geometric incompatibility tensor G does not

depend on the material model being used, but only on the growth field Fg. There is

an alternative derivation for the geometric incompatibility tensor G in terms of the

elastic deformation alone Fe (see Eq. (4.12)), but the two are equivalent. Thus, even
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Fig. 4.3.: In-plane area growth: A flat disc grows in area driven by the linearly varying
growth field ϑg along the radial direction (a). Even though the material is anisotropic,
the amount of incompatibility is independent of the material behavior. The local
Burgers vector density for the plane, defined by e3 is aligned circumferentially (b).
Residual stress, however, do depend on whether the direction of anisotropy is radial
(c) or circumferential (d). (Continued on the following page.)
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The patterns in the elastic deformation are similar in both cases, with the circum-
ferential component of the stress going from tension to compression from the center
to the boundary of the disc. In contrast, the radial component of the stress has to
satisfy a traction free boundary condition, and the stress decreases from the center to
the periphery. Because the Gasser-Ogden-Holzapfel model leads to increasing stress
when fibers are in tension, the overall stresses from radially aligned fibers are larger
compared to circumferential fibers. Plots of σr , σθ , and Ψ with respect to R are
shown in (e).
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when G is computed from Fe, it is still independent of the mechanical equilibrium

problem and the choice of material model. For our example, we compute the local

Burgers vector density and observe that it is circumferentially aligned on the plane

(Fig. 4.3b). This circumferential alignment is indeed what we expected based on the

derivation for b for area growth in Eq. (4.22).

Even though the growth field and incompatibility metrics remain the same, the

residual stresses change if the GOH material is considered with a radial fiber family

(Fig. 4.3c) or circumferential fiber family (Fig. 4.3d). We report the circumferential

stress σθ , radial stress σr , and free energy density Ψ. When the fiber is radially

distributed, as expected, stress along fiber direction is higher than the stress in the

circumferential direction (Fig. 4.3c). The radial component of the stress is in tension

and the stress is higher at the center compared to the periphery of the disk, where it

vanishes because of the boundary condition. The circumferential direction follows a

more similar pattern compared to the previous cases, with tension at the center and

gradually transitioning to compression at the outer layers just as in the simple tumor

example. If the fiber orientation is circumferential, the trends in the stress are similar

but overall the stresses and strain energy are lower, particularly due to the lack of

fibers in tension in the radial direction (Fig. 4.3d).

The residual stress patterns follow the geometric constraints of the entire body.

Clearly, the outer boundary of the disk has to satisfy a zero normal stress component,

and in consequence the stress in the radial direction decreases from the center to the

periphery. While the pattern of deformation is similar in both cases, when the fibers

are aligned radially they contribute to higher stress. For the circumferential com-

ponent, the elastic deformation is similar to the previous example, with a transition

from tension to compression [240]. For clarity, plots of σr , σθ , and Ψ with respect to

the radial direction are shown in Fig. 4.3e.
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4.3.4 Uniaxial fiber growth

Anisotropy arising from fibrous microstructures is a key feature of biological mate-

rials. This is not only important for the mechanical behavior, as seen in the previous

example, but also for the way they grow and remodel. For example, tissues such

as muscle grow preferentially in the fiber direction [247]. Computational models of

muscle growth within the finite volume growth framework have accurately captured

the observations that muscles adapt to mechanical cues by growing or shrinking in

length [248]. For this example, consider a cylindrical domain with the cross sectional

area π/4 mm2 and length 1 mm and discretized with 960 C3D8 elements and 1, 243

nodes (Fig. 4.4a). Only the minimum set of essential boundary conditions that pre-

vent rigid body motion are imposed. The fiber direction in the domain is constant and

aligned with the basis vector f0 = e1. We restrict our attention to the neo-Hookean

hyperelastic potential. The prescribed growth field is

ϑg B 1 +
1

4
X2t with t ∈ [0, 1] . (4.52)

The resulting growth is up to 25% in length at the top of the fiber, with no

growth at the bottom of the fiber (Fig. 4.4a). Note that the gradient of growth is in

the direction e2, orthogonal with respect to the fiber direction, but growth actually

occurs along the fiber direction. Our choice for this growth field directly follows

the derivation of the geometric incompatibility tensor G for fiber growth, where we

show that the magnitude of the local Burgers vector density |b| is greatest when the

growth gradient is orthogonal to the fiber direction. The associated local Burgers

vector density corresponding to the plane e3 is shown in Fig. 4.4b. The local Burgers

vector density b shows a small variation from greater values at the bottom of the fiber

to smaller values at the top. This inverse trend with respect to the growth variable

is the same feature from the previous examples and it is due to the scaling of the

geometric incompatibility tensor by the Jacobian ϑg (see Eq. (4.27)). The Burgers

vector aligned with the fiber direction.
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Fig. 4.4.: Fiber growth with linear field ϑg is modeled in a cylinder-shaped finite ele-
ment model. The reference and current configurations are shown (a). The associated
local Burgers vector density is calculated on the plane normal to n̄ = e3 (b). The
body undergoes pure bending. The stress, however, is zero everywhere as reflected in
the strain energy contour (d). In fact, the elastic deformation is a pure rotation field
around e3 (c). The scalar invariant of incompatibility Curl Fg : Curl Fg is constant
and nonzero over the domain (e).

In contrast to previous examples, in this case the residual stress is zero everywhere

in the domain. Instead of showing the residual stress contour, we show the free energy

density (Fig. 4.4d) and the scalar invariant of incompatibility Curl Fg : Curl Fg (Fig.

4.4e). Note that there is incompatibility induced by the growth field, and that the

cylinder deforms due to the prescribed growth. Yet, there is no residual stress. Recall

that the elastic deformation tensor should counteract the incompatibility introduced

by Fg. However, the polar decomposition of Fe in Eq. (4.4) reveals that a pure

rotation field would be able to get a globally compatible F with no stress. This is in
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fact what is happening here. In matrix form, using the Cartesian basis, the growth

tensor is

Fg =


1 + aX2 0 0

0 1 0

0 0 1


, (4.53)

for some non-zero value a. This growth field is incompatible as illustrated in Fig.

4.4b and e. We propose that the elastic deformation can be a rotation Fe = Re. In

matrix form

Fe =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1


. (4.54)

This rotation should be such that the total deformation F = FgFe is compatible.

The total deformation gradient is

F =


(1 + aX2) cos θ sin θ 0

−(1 + aX2) sin θ cos θ 0

0 0 1


. (4.55)

To show that this is the case, all we need to do is to show that there is a vector

field whose gradient leads to Eq. (4.55). Consider

ϕ =

(
X2 sin(aX1) +

1

a
sin(aX1), X2 cos(aX1) +

1

a
cos(aX1), X3

)
. (4.56)

The deformation gradient F in Eq. (4.55) is actually the gradient of the map ϕ

in Eq. (4.56), with θ = aX1. Furthermore, this has to be the solution of the problem

since, by reducing to a rotation, Fe leads to zero stress and also satisfies the mechanical

equilibrium problem. Numerically, Fig. 4.4c shows that the elastic deformation Fe

from our finite element solution is actually a pure rotation around e3 that varies along

X1 as expected.
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4.3.5 Brain atrophy

Commonly, the idea of tissue growth is associated with an increase in mass; how-

ever, as noted after introducing Eq. (4.3), volume loss can also be considered, as

in the case of tissue atrophy. A representative example is atrophy and shrinkage of

the brain as a result of amyloid-β accumulation and tau protein malfunction [260].

Coupled to a nonlinear reaction-diffusion model that captures the propagation of the

misfolded proteins in pyron-like diseases, brain volume loss has been modeled with a

nonlinear finite element model [82, 243]. Here, we look into the incompatibility and

residual stress that arises from the heterogeneous growth patterns associated with

reaction-diffusion coupling. For the reader interested in details on the theory, finite

element implementation, and simulations for the coupled reaction-diffusion model of

brain atrophy, please consult [82, 243].

One of the main features of the models in [82, 243] is the relative shrinkage rate

between gray and white matter tissues. Gray matter undergoes faster volume loss

than white matter [244]. From the mismatch in the growth field at the boundary

between gray and white matter it is expected that residual stresses will arise.

Here we start from the two configurations of the brain: the reference, healthy

geometry, and the shrunken, atrophied configuration (Fig. 4.5a). The maximum

volume loss is about 30%. The corresponding residual stresses from growth are het-

erogeneously distributed in the brain (Fig. 4.5b). To improve visualization, slices

with normals given by the standard basis in 3D Euclidean space are presented (Fig.

4.5c-e).

It can be observed from the different cross sections that atrophy takes place mostly

on the outer gray matter while the inner white matter has almost no volume loss (Fig.

4.5c). As a result, sharp growth gradients are expected near the interface of these

two tissues. Indeed, after computing the geometric incompatibility tensor G and the

corresponding local Burgers vector density b for each of the planes of interest, we

can observe that the degree of incompatibility characterized by the magnitude |b| is
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Fig. 4.5.: Isotropic volume shrinkage or negative growth caused by diffusion-reaction
of misfolded proteins in the human brain. Growth field ϑg in the reference and current
configuration (a) and the maximum principal stress field seen on the outer surface of
the brain (b). (Continued on the following page.)
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Representative cross-sections in the sagittal, coronal, and axial direction (left to right
column in c-e) show that the inner white matter undergoes almost no shrinkage while
the outer gray matter has up to 30% volume loss (c). The local Burgers vector density
can be calculated solely based on the growth field, showing greater incompatibility at
the interface between gray and white matter because of the higher growth gradients
(d). The Burgers vectors are in the plane and aligned with the interface between
the two types of brain tissue (d). Maximum principal stress on the sections of inter-
est reflects the incompatibility characterization, with greater stress at the interface
between gray and white matter (e).
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concentrated near the interface (Fig. 4.5d). The maximum principal stress visualized

on the same planes aligns with the geometric measure of the incompatibility (Fig.

4.5e). Similar to |b|, stress σ localizes at the interface between gray and white matter

and decreases towards the outer brain surface. Thus, in this case, the characterization

of the necessary geometric incompatibility based solely on the growth field provides

useful intuition regarding the resulting stress field.

4.3.6 Area growth induced by skin expansion

Skin, like all soft tissues, adapts to mechanical cues via growth and remodel-

ing [261]. This knowledge has been leveraged in the clinical setting to gain skin

for reconstructive purposed in tissue expansion [177, 246]. In tissue expansion, a

balloon-like device is implanted subcutaneously and dilated over a period of months

to stretch skin supra-physiologically and trigger its growth [7]. Previous work by

our group has resulted in computational models of skin expansion [131] as well as

a porcine experimental model to better understand skin mechanobiology [97]. Some

of our experimental work revealed the existence of a complex residual strain field

even after releasing the skin from external loads and constraints [116]. Here we start

from the modeling of tissue expansion within the finite volume growth and quan-

tify the geometric incompatibility tensor for commonly-used expander shapes and its

connection to residual stress.

We create finite element models of 10× 10 cm skin patches with thickness h = 0.3

cm discretized with 3, 200 C3D8 elements and 5, 043 nodes. Four different expander

geometries are considered: rectangle-, circle-, square-, and crescent-shaped (Fig.

4.6a). The expanders are inflated to 50 cc and this volume is maintained for 7 days

before deflation, analogous to an individual inflation step in the clinical setting [97].

For these simulations, the neo-Hookean model of our previous work is considered [98],

although, like for most collagenous tissues, anisotropy can play a role in the mechan-
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Fig. 4.6.: Area growth in tissue expansion. Growth ϑg following inflation with four
different expander geometries (rectangle-, circle-, square-, and crescent-shaped) shows
greatest area increase at the apex compared to the periphery (a). The local Burgers
vector density and its magnitude on the skin plane determined by the surface normal
shows larger magnitude in regions of higher growth gradients (b). The corresponding
residual stress contours from maximum principal stress also shows similar features
(c).

ical behavior and subsequent growth [97, 180]. The constitutive model for growth is

the one introduced in Eq. (4.46).

Inflating the expanders to 50 cc induces area growth up to 50% with respect to the

original area (Fig. 4.6a). The area increase depends on the shape of the expander.

The square expander results in the largest area growth and the circular expander

yields the smallest growth. In all cases, the growth field is characterized by greater

area gains at the apex of the expander and gradually less toward the periphery of the
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expanded region. The local Burgers vector density b is calculated based on the growth

field on the plane normal to n̄ = e3 (Fig. 4.6b). Similar to the previous example and

due to the fact that the geometric incompatibility tensor G is directly linked to the

gradient of ϑg, the magnitude of the local Burgers vector density |b| is generally

greater in regions of steep growth gradient. There are other factors at play, such as

the total growth as discussed in the first three examples. |b| is greater right at the

base of the expander, where there is a rapid transition between regions that are not

stretched and not growing to regions being affected by the expander. Another region

of high growth gradient is due to the contact and the shape of the expander. The apex

has the largest growth ϑg, but it is actually free of incompatibility. After deflation,

we observe that the maximum principal stress shows similar features compared to the

incompatibility metrics (Fig. 4.6c). Tension of about 40 kPa occurs at the base, with

regions of 40 kPa compression at the zones of contact between expander and skin,

which also have large incompatibility in terms of |b|.

4.3.7 Axon growth in brain development

The exact mechanisms of cortical folding in the brain are not yet fully under-

stood. However, abnormal folding is associated with impaired brain function and

psychological diseases [250]. Some of the theories that have been proposed to explain

brain folding include the differential growth between different brain regions due to

both mechanical and biological cues. Finite element and theoretical models [250,262]

have been developed to improve our understanding of cortical folding, in particular

the expected tissue mechanics associated with the emerging brain morphology. The

essential model of cortical folding is that of a bi-layered system coupled to the finite

growth theory.

We start from the finite element model proposed in [250] which considers the role

of axon orientation on the resulting instabilities of the bi-layered system, as repre-

sented by Eq. (4.23) for fiber growth. The rectangular domain of 3 × 1 cm with
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Fig. 4.7.: Bi-layered system to capture cortical folding taking into account the axonal
fiber orientation. The top layer, the cortex, has a constant growth rate, while the
bottom layer, the subcortex, shows stretch-driven fiber growth in the direction of the
axons. Folding patterns emerge for three different axon orientations: curved outward,
concentric, normal to the interface (a, left to right). The local Burgers vector density
is calculated on the plane normal to n̄ = e3 and it shows that the incompatibility
due to growth occurs mostly at the interface between cortex and subcortex (b).
Removing all constraints and external forces, the only residual stress left is due to
the incompatible growth field, which shows that the maximum principal stress occurs
at the interface between the two layers (c).

thickness 0.05 cm is discretized into 6, 000 C3D8 elements and 12, 462 nodes. The

top, gray matter (cortex), has thickness of 0.05 cm, while the lower region in the

domain is the white matter (subcortex). Three different axon orientations f0 in the

subcortex in the reference configuration are considered: curved outward, concentric,
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and straight (Fig. 4.7a). The cortex is allowed to grow only in the e1 direction.

Although not relevant for the incompatibility characterization, for the buckling in-

stability patterns we note that there is a difference in the shear modulus between

the cortex and subcortex µgray/µwhite = 3 . The growth rate between the two layers

also differs, with Ûϑgcortex/ Ûϑ
g
axon = 0.1. We simulate a time of 75 days, fixing Ûϑgcortex

to 0.008/hour. The growth field ϑ
g
cortex is not mechanically coupled, while the other

hand, the axon growth in the subcortex is stretch driven [250].

The differential growth between the two layers and the constraints at the ends

of the domain lead to the characteristic patterns of folding seen in the brain (Fig.

4.7a). Most of the growth is observed on the top layer of the system, but, resulting

from the instability and subsequent fold formation, some growth is observed along the

axon orientation in the subcortex. The greatest growth gradients are observed at the

interface between the two layers of the domain. Given Fg in Eq. (4.23), we compute

the geometric incompatibility tensor G and then the local Burgers vector density b on

the plane normal to n̄ = e3. The Burgers vector density has its greatest magnitude

precisely at the interface between the cortex and subcortex, where the gradient of

growth is sharpest. This is the expected behavior of the system. The ideal scenario

in which no axon growth is considered but only differential isotropic growth between

the two layers is considered would lead to zero incompatibility in either region. In that

case, folds would still form, and the cause for residual stress would be the mismatch

along the interface of the two layers [263]. In fact, an experimental confirmation is

presented in [264], where two thin strips of elastomers are deformed elastically to a

different extent (and therefore without any incompatibility) and then glued together.

The bi-layered system shows the expected instabilities and buckling patterns, but in

the end the only source of incompatibility is precisely at the interface. In our example,

incorporating the axon orientation and growth leads to Burgers vectors mostly aligned

with the interface (Fig. 4.7b). The direction of the axons does affect the pattern and

magnitude of |b|, as the gradient between cortex and subcortex is greater when the

axons are normal to the cortex (second and third columns in Fig. 4.7a), as opposed
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to the case in which axons approach the interface tangentially (first column in Fig.

4.7a).

The buckling patterns typical of the folded brain exist because of the constraints

applied to the system, which is fixed at both ends. We are interested in the residual

stress patterns when there are no external loads and the only constraints imposed are

those that prevent rigid body motion. The residual stress field that arises solely by

the incompatibility is shown in Fig. 4.7c. We restrict our attention to the maximum

principal stress. There is peak tension at the subcortex right below the interface with

the cortex, particularly for the cases in which the axon orientation is normal to the

interface. For the case in which the axon orientation is tangential to the interface, the

incompatibility is less pronounced and the residual stress is also much lower. Moving

away from the interface, the stress decreases. In the cortex, stresses are actually very

small. The growth in the cortex is uniform and this layer is stiffer that the subcortex.

Then, releasing all constraints leads to a constant bending of the top layer. This

overall bending exerts the tensile stresses at the top of the softer subcortex, with

small variations corresponding to the growth field in the axon direction. Yet, as stated

before, the variations in the growth field within the subcortex are small compared to

near the interface with the cortex.

4.4 Discussion

The exact microscopic origin of residual stress in soft tissues is still an open ques-

tion. It is generally accepted, however, that the prestress field at the macroscopic level

is a consequence of constant growth and remodeling of living matter [148, 213, 230].

Growth and remodeling can be captured within a continuum mechanics framework

in a manner akin to plasticity by splitting the deformation gradient into growth and

elastic contributions [123,215]. This split is linked to the idea of incompatibility [219],

a notion of mismatch and discontinuity between differential volume elements at the

microscopic scale. In crystal plasticity, these concepts are linked to lattice defects.
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Although the interpretation is not the same for soft tissues, we borrow from the con-

cepts of crystal plasticity to describe the kinematics of incompatibility due to growth.

Through this paper, we have presented the distinctive features of the geometric in-

compatibility tensor that exist for three general growth formulations: volume, area,

and fiber growth. We also compute the geometrically necessary incompatibility for

three realistic biomedical problems. Although we focus on the geometry of incom-

patibility, we show that some features of the residual stress field are closely related

to the incompatibility field.

The primary object of the present work was to introduce the geometric incom-

patibility tensor G in the context of growth and remodeling. This tensor is based

on the definition of the Burgers vector, which is a measure of the failure to close

circuits in a surface after the application of the irreversible deformation Fg. The

generalization of the Burgers vector calculation for any normal n, together with a

localization argument, yields the tensor G and is closely related to the Curl operator.

In the finite volume growth theory, the tensor Fg is constrained by the biology and

by the anatomy, or microstructure, of the tissue. Growth is also connected to the

thermodynamic balance laws which connect the tensor Fg to the scalar mass source.

These constraints on Fg allow us to derive specific features of G for different growth

modes. The most prominent feature is that the degree and direction of incompatibil-

ity depend on the magnitude and direction of the growth gradient. There are more

subtle features that were discussed for the individual growth models.

To better understand these incompatible fields we started with very simple illus-

trative examples. A key task in our manuscript was the numerical implementation of

the different growth problems and the subsequent calculation of the incompatibility

metrics within the finite element framework. To that end, we were able to compare

our simulations against the analytical derivations. The finite element calculations

further cemented some of the observations about G and the local Burgers vector den-

sity b. For example, the simple examples also showed that there is no incompatibility

in the direction of the growth gradient and that for a given plane defined by normal
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n the Burgers vector has to lie in that plane. In contrast, we did not devote much

attention to the residual stress resulting from the incompatible growth field. The

stress field is more complex because there are several factors that come into play and

not just the geometry of the deformation. Clearly the Fe field is generally depen-

dent on the overall geometry and boundary conditions [240]. That being said, our

numerical implementation naturally delivers the residual stresses in our simulations

and allows us a side by side comparison of incompatibility patterns and the resulting

stress field. The last of the representative examples allowed us to showcase that there

are incompatible growth fields that do not lead to stress, something that is better

understood for crystals [234]. In our fiber growth example, we showed how a pure ro-

tation Fe = Re is sufficient to obtain a total deformation that is inherently compatible

and entails no residual stress.

Our idealized problems enabled us to point out the distinctive features of the

geometry of incompatibility and to showcase the finite element implementation which

we make available with this manuscript. Yet, we are interested in understanding how

these incompatible fields look like in realistic applications. We know that residual

stress is a feature of living tissue and that it is important for function [265]. Hence,

having presented our tools, we applied them to three relevant biomedical questions. In

the brain, for example, we observed that the gradient of growth during development

and atrophy is highest at the interface between white and gray matter, and that is the

region with the highest degree of incompatibility and also residual stress. The perfect

experimental analogy of an ideal system is the work by Budday et al. [264], where the

compatible deformation of two layers before being glued together leads to residual

stress due to the mismatch of deformation at the interface. Our numerical example

in the brain adds additional complexities compared to the idealized experiment. For

example, the growth of axons in the white matter can increase or decrease the degree

of incompatibility depending on their orientation with respect to the interface.

From the tissue expansion simulations we also gained valuable insights. It has

been discussed in previous computational models, clinical experience, and animal
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experiments, that there is more growth at the apex compared to the periphery [115,

177]. Here we show that, in fact, the residual stress is highest at the periphery and

at the beginning of the contact region between expander and skin. These regions

coincide with the sharpest gradients of growth and our incompatibility metrics.

This work is not without limitations. One of the open questions in this work is the

precise connection between the geometry of incompatibility and the residual stress.

While the metrics introduced do align in general with the development of residual

stress, more work is needed to elucidate this relationship in more detail. The other

main limitation is that we have fully focused on the split of the deformation gradient

into growth and elastic contributions. This approach is useful in practice, describes

growth and remodeling accurately, and is amenable to efficient finite element im-

plementations [259]. However, comparison against other descriptions of growth and

remodeling is our future endeavor, such as the evolution of natural configurations for

individual constituents [230], or the notion of a higher-dimensional reference configu-

ration [228, 229]. Finally, one open question that we will also continue to investigate

in the near future is a better interpretation of the geometry of incompatibility for soft

tissues. As we stated repeatedly in the manuscript, soft tissues do not have lattice

defects or dislocations. While our analysis is useful at the continuum scale, it leaves

unanswered the microscopic and molecular origin of incompatibility in living matter.

4.5 Conclusion

Within the finite volume growth framework, residual stress arises due to the in-

compatibility of the growth field. Here we explore in detail the geometric characteri-

zation of this incompatibility. We implement the calculations of growing tissues and

the geometric incompatibility tensor G into a nonlinear finite element framework. We

showcased idealized scenarios and also relevant biomedical applications. Therefore,

we expect that this work will further our insight into the origin and characterization

of residual stress in soft tissue, which can be instrumental in understanding disease
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and designing clinical interventions in which growth and remodeling of soft tissue

plays a central role.
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5. MECHANICAL CHARACTERIZATION OF SKIN IN

VIVO USING A SUCTION DEVICE

Abstract: One of intrinsic characteristics of skin is high variation in the mechani-

cal properties across different demography and even between individuals. Therefore,

accurate characterization of mechanical properties of skin is a crucial ingredient to

anticipate stress value after deformation. However, it is still a challenge because in

vivo status of skin itself prevents us utilizing traditional method, e.g., uniaxial tensile

test. Simultaneously, anisotropic feature results from distributed fiber family is one

of outstanding characteristics which is also difficult to characterize in in vivo state. In

reconstructive surgery, it is also important to know mechanical behavior of patient’s

skin since better understanding on stress value after resurfacing is beneficial to im-

prove surgical outcome, in which unexpected high stress can give rise to any delayed

wound healing or wound complications. To capture mechanical properties of skin in

vivo, suction device, Cutometer, which applies negative pressure to deform skin, has

been utilized, but anisotropic feature is usually ignored in the analysis. To also mea-

sure anisotropic characteristic, we propose elliptical opening of the suction device,

which usually has a circular opening. Newly proposed shape is designed by finite

element (FE) model, which enacts a forward model in framework of inverse problem.

In order to capture skin properties inversely, we make use of Bayesian framework

which also enables us to take into account uncertainty quantification of the solution

of inverse problem. By seeking more efficient way to solve the inverse problem, FE

model, which is an expensive forward function, is substituted with Gaussian process

regression. In addition, the approach to solve inverse problem is also designed to

enhance efficiency by using active learning algorithm.
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5.1 Motivation

Skin is the largest organ in human body and enacts various roles as barriers

against external factors, pathways for materials, and homeostasis, and so forth [266].

One of intrinsic features of the skin is high variation of mechanical and biological

response across different demography and even body locations of a person [178]. In

reconstructive surgery, especially, the mechanical properties of the skin are important

information in preoperative stage so as to plan optimal surgical scenario or avoid the

delayed wound healing since unexpected high stress after reconstructive surgery can

take place wound complications [267–269]. The mechanical properties of the skin is

closely related to the level of stress according to the external force, and hence ac-

curate measurement of mechanical characteristics of skin is of practical importance

for robust surgical plan. However, characterization of mechanical behavior of skin is

nontrivial because of in vivo state, which yields non stress-free state [9] as well as

difficulty to utilize a conventional testing methodology such as the uniaxial tensile

test. To overcome the difficulties, a suction test accompanied with negative pres-

sure has been proposed such that the maximum height by the negative pressure is

measured in in vivo state. The measurement of deformation is, however, usually not

compatible with the conventional way to express mechanical characteristics of solid.

For example, the height at apex characterized directly at different time interval enacts

the representative quantities for aging effect [184], scar tissue [270], and epidermal

hydration [271].

In this response, the inverse problem accompanied with finite element (FE) method

has enacted a bridge to derive the conventional expression for mechanical properties

of skin from unconventional expression for that [272]. For instance, the conventional

stress-strain relations are indirectly derived from FE analysis once the corresponding

mechanical property of skin is matched to the deformation. Matching the results of

FE analysis and the corresponding mechanical property of the skin can be carried

out by the approach of inverse problem. Beyond the suction device, previous studies
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have solved the inverse problem via in vivo and noninvasive ways such as indentation

test [26, 76], in situ tension test [178], and suction test [27, 75, 273], to name a few.

Those studies usually make use of the manner with least square error to optimize the

unknown mechanical properties of skin through experiment, FE analysis, or both of

them.

Here, we make use of Cutometer (Courage + Khazaka Electronic, Germany), one

of suction devices, to characterize mechanical properties of skin in vivo. Unlike pre-

vious studies using the suction device, we develop new design including non-circular

opening, e.g., elliptical opening, in order to capture anisotropic nature of skin. Our

thought experiment is realized by FE analysis, which shows the suction device with

2 and 8 mm circular opening as well as elliptical opening of 4 mm minor and 8 mm

major axis.

In the light of the solution of inverse problem, evaluation of a forward function

is an essential factor which dominates the optimized solution [274]. If the forward

function is expensive to evaluate frequently, surrogate model can be used alterna-

tively [275]. Inadequate selection of a surrogate model, however, can yield overfitting

or underfitting issue when the solution is predicted. To avoid such danger, Gaussian

process (GP) regression has been utilized to express the latent forward function [274].

For example, GP posterior can enact a forward function, and it is also beneficial for

the gradient-based optimization because derivatives of GP posterior is only depen-

dent on the kernel function. Consequently, we can know the gradient of a forward

function through direct calculation of the kernel function and also the availability of

differentiation based on the characteristic of kernel function [187].

Solution of inverse problem is typically achieved by minimization of the least

square error of the loss function with iterative algorithm. It is widely utilized but

there is a limitation that the solution is a deterministic outcome regardless of the

degree of uncertainty. To circumvent such limitation, Bayesian perspective can also

be immersed into the optimization such that a solution has a point-wise value as well

as the corresponding uncertainty [274]. Based on the tractability to evaluate integral
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of marginal likelihood, Markov Chain Monte Carlo (MCMC) sampling can be used

to derive the distribution of solution.

The aim of this paper is to propose the solution for the inverse problem to achieve

the mechanical properties of skin through in vivo and noninvasive manners, especially

to capture the anisotropic feature of skin. We make use of Cutometer for the suction

test with negative pressure. To build the forward function space, FE analysis of the

suction test is employed, and GP regression bridges relation between the mechanical

properties of skin (input) and the associated deformation (output) over the func-

tion space, i.e., GP surrogate model substitutes the forward function of FE analysis.

Bayesian perspective is applied to obtain the solution of the inverse problem. To

circumvent difficulty to evaluate marginal likelihood, we adopt MCMC sampling to

express predictive posterior distribution.

5.2 Methods

5.2.1 Suction test

In general, Cutometer has two sizes of circular hole such as 2 and 8 mm diameters,

through which negative pressure is applied on the skin and the deformation of skin

is measured by laser-based manner (left in Fig. 5.1a). There are two different load-

ing profiles to investigate the behaviour of skin with Cutometer, one is the linearly

increasing loading and the other is the instant loading. For both cases, maximum

height at the apex is recorded. In this study, we only focus on the skin response to

the instant loading, meaning that hyperelastic behavior of skin is only considered.

There are a couple of possible values of pressure and we take into account three pro-

files, 30, 40, and 50 kPa. Only with circular opening, however, it is not possible to

capture anisotropic feature of skin, which is basically the effect of fiber dispersion

along specific orientation on the skin plane [178]. To overcome this limitation, we de-

velop elliptical opening entrance with 8 mm major axis and 4 mm minor axis, which

is fit to 8 mm circular opening entrance (Fig. 5.1b). The elliptical opening entrance
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is applicable to the measurement of anisotropy efficiently because the deformation of

skin by Cutometer is not axisymmetric.

Given two circular opening entrances and one elliptical opening entrance, total five

measurements are available, namely single measurement per circular opening entrance

and three measurements per elliptical opening entrance (bottom in Fig. 5.1b). Note

that we rotate the fiber orientation by 45◦ two times, instead of rotating the elliptic

Fig. 5.1.: Finite element (FE) model for Cutometer which applies the negative pres-
sure on the skin. Cutometer is placed on the skin to apply negative pressure and
designed by FE model in order to simulate skin deformation and measure the max-
imum height (a). The same skin is tested with different opening shape (2 and 8
mm circular opening and elliptical opening with minor axis 4 mm and major axis 8
mm) (b). Note that fiber orientation is varied when the measurement is implemented
using elliptical opening pressures (white arrows in b). Those five different tests are
available for three different pressure values, and therefore total 15 tests are carried
out per the same skin. Each test is independent and, hence, assumed as independent
events although mechanical properties of the skin is the same.
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opening entrance. It is manifest that five maximum heights are different although the

same mechanical properties of skin is used. Those five measurements are implemented

at the same value of pressure, but as we mentioned before, there are three values of

pressure such as 30, 40, and 50, and hence total 15 measurements are obtained per

single set of skin properties.

5.2.2 Finite element analysis

Following the previous section, it is needed to design Cutometer device as 3D FE

model to be able to represent anisotropic characteristics of skin. (Fig. 5.1a). We

implement FE analysis using the nonlinear FE package Abaqus (Dassault Systems,

Waltham, MA). There are three different models. For 2 mm circular opening entrance,

the domain of interest is discretized into 99, 640 C3D8H elements and 110, 671 nodes,

while for 8 mm circular opening entrance, the domain of interest is discretized into

103, 952 C3D8H elements and 117, 891 nodes. For elliptical opening entrance, skin

part is discretized into 116, 780 C3D8H elements and 129, 624 nodes. To be specific,

we assume that skin shows incompressible behavior by using hybrid element, which

contains additional degree of freedom such that the nodal displacements at each

element only contribute the calculation of deviatoric strain and stress. In each model,

there are two distinct regions such as deformable and rigid parts, in which skin is only

deformable during simulation while Cutometer device, meaning opening entrance,

enacts a rigid body. Skin part, especially, is divided into anisotropic and isotropic

layers, where only top layer of 1.7 mm has anisotropic behavior, while the rest of skin

part is assumed as isotropic deformation. The thickness value of layers is referred

from [27].

As a constitutive model for anisotropic and isotropic layer in the skin part, we

make use of Gasser-Ogden-Holzapfel (GOH) model for anisotropic behavior and neo-

Hookean model for isotropic behavior [57]. Let us define basic kinematics’ quantity.

Deformation gradient tensor F is a linear transformation of points from the reference
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to current configuration. We need the right and left Cauchy-Green tensors, denoted

C = F>F and B = FF>, respectively. Deviatoric part of F is J1/3F where J = detF,

and C and B can also be defined from F. First of all, strain energy density function

for incompressible GOH materials is expressed like

Ψ = Ψiso(C) + Ψaniso(C,Hα)

Ψiso(C) =
µ

2
(I1 − 3) and

Ψaniso(C,Hα) =
k1

2k2
(exp (k2〈Eα〉2) − 1) ,

(5.1)

where I1 = J−
2
3 I1 is the first invariant of C and Eα ≡ C : Hα−1 is the pseudo-invariant

with respect to the symmetric generalized structure tensor Hα = κI + (1 − 3κ)aα ⊗ aα

with fiber direction aα in the reference configuration. To be specific, aα is represented

as a unit vector and its direction is defined by θ. µ is the shear modulus and expresses

stiffness of ground tissues, while parameters k1, k2, and κ capture the response of the

fiber family: k1 describes the tensile response, k2 is dimensionless and expresses

nonlinearity of the fiber response, and κ is another dimensionless parameter that

indicates dispersion in the range 0 to 1/3, from perfectly anisotropic to perfectly

isotropic. The notation 〈·〉 in Eq. (5.1) denotes the Macaulay brackets. Eq. (5.1) is

only for the top layer of skin to account for anisotropic behavior, while the bottom

layer of skin is designed by incompressible neo-Hookean material, which strain energy

density function has only Ψiso(C) in Eq. (5.1). Two layers in the skin part share the

same shear modulus µ value, but fiber orientation aα is assigned only at the upper

layer of skin part.

Each model shares the same essential boundary conditions for skin part such

that both the bottom surface and the region just below the Cutometer part are

constrained by three translational degree of freedom. To be specific, we do not make

use of a contact condition between Cutometer and skin parts in order not to cause

computational difficulty toward convergence, but instead the surface just below the

Cutometer part is fixed. The Cutometer part, it is fully fixed. Natural boundary
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condition is only the negative pressure applied and the surface area to apply the

negative pressure is determined based on the shape of Cutometer opening entrance

(first row in Fig. 5.1b).

5.2.3 Gaussian process regression

GP defines a probability measure over the function space, that is, random vari-

ables are collected from the function space such that any finite subset of the random

variables has a joint Gaussian distribution [187]. We substitute GP regression for the

forward function which is FE analysis in this study. Let D := (X,Y) be the input

and output training dataset such that input

xi = (µ(i), k(i)1 , k(i)2 , κ
(i), θ(i)) ∈ X ⊂ R5 with i = 1, · · · , n (5.2)

consists of mechanical properties µ(i), k(i)1 , k(i)2 , and κ(i) in Eq. (5.1) and fiber direction

θ(i), and the corresponding output becomes

yi = (y(i)1 , · · · , y
(i)
15) ∈ Y ⊂ R15 with i = 1, · · · , n (5.3)

which contains the maximum height values of skin with respect to different opening

entrances and different pressure values applied. The number of training dataset is

equal to n. To be specific, y
(i)
1 , y

(i)
2 , y

(i)
3 are the maximum height values with 2 mm

circular opening entrance by pressure 30, 40, and 50 kPa, respectively. Similarly,

y
(i)
4 , y

(i)
5 , y

(i)
6 are the maximum height values with 8 mm circular opening entrance per

each pressure value. On the other hand, y(i)7 , y
(i)
8 , y

(i)
9 are the maximum height values

with elliptical opening entrance when fiber orientation becomes θ + 0◦, θ + 45◦, and

θ + 90◦ and pressure value is 30 kPa. Likewise, other two pressure values, 40 and 50

kPa, are also applied, and the corresponding output is obtained with similar manner.

Importantly, we treat each output in yi independently because each measurement

does not affect other measurements. At kth output, for example, y(i)k = fk(xi) + ε (i)k is
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the output expression after adding Gaussian noise ε (i)k ∼ N(0, σ
2
Gk
) where σ2

Gk
is the

unknown variance and to be determined. Here, we assign the function fk as GP such

that

fk(·)|θ ∼ GP (m(·; θ), k(·, ·; θ)) , (5.4)

where θ is called hyperparameters of the noise-free covariance function, m(·; θ) is the

mean function, and k(·, ·; θ) is the covariance function or kernel function. fk as GP

is trained by Dtk = {xi, fk(xi)}ni=1 which is kth training dataset with the number of

dataset n. Our prior belief is encoded on our choice of the mean and covariance

function. If there is no prior knowledge on the mean of fk(·), we can select m(·; θ)

to be zero mean function, which is common in most applications. For the covariance

function k(·, ·; θ), we make use of the squared exponential,

k(xi, x j ; θ) = s2exp

(
−1

2
(xi − x j)>Λ−1(xi − x j)

)
. (5.5)

The hyperparameters can now be explicitly defined as θ = (σ2
Gk
, s, l1, · · · , l5). The

parameter s (> 0) is the signal strength; l1, · · · , l5 are called characteristic length

scales corresponding to each input, they are all positive, and enter Eq. (5.5) via

Λ = diag(l21, · · · , l25).

Given input training dataset X, the prior GP on the corresponding kth response

output is a normal distribution such as

fk |X, θ ∼ N(0,K) with fk = ( fk(x1), · · · , fk(xn)) , (5.6)

where K is the covariance matrix expressed by the kernel function at the input data

points. To be specific, the matrix K has (i,j) components k(xi, x j ; θ) in Eq. (5.5), and

it is symmetric and positive semi-definite. The conditional distribution of fk given

yk is represented as a multi-variate and isotropic Gaussian distribution. Recalling

that any finite subset of random variables has a joint Gaussian distribution, the joint
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distribution of yk and a new test output fk(x∗) also follows a normal distribution such

that

fk(x∗)|X, yk, x
∗, θ ∼ N

(
µk(x∗; θ), σ2

k (x
∗; θ)

)
, (5.7)

where the predictive mean and variance at x∗ are respectively defined as

µk(x∗; θ) = k(x∗,X; θ)(K + σ2
G,rI)−1yk (5.8)

and

σ2
k (x
∗; θ) = k(x∗, x∗; θ) − k(x∗,X; θ)>(K + σ2

G,rI)−1k(X, x∗; θ) . (5.9)

We make use of GP posterior fk(x∗) in Eq. (5.7) as a forward function to solve

the inverse problem for mechanical properties of skin such that the predictive mean

µk in Eq. (5.8) enacts the forward function value at the unknown input point x∗.

Furthermore, the variance σ2
k is used as the uncertainty quantification for µk .

To build training dataset, we select n as 100 and generate X by Latin hypercube

sampling (LHS) when the range of input dataset follows Table 5.1 which is derived

from [23, 60, 180]. Given X, we run 15 different FE simulations independently in

order to obtain training output dataset. We allow automatic relevance determination

for each length-scale and make use of maximum log marginal likelihood to fit the

hyperparameters θ. We make use of GPy [195] for GP regression.

Table 5.1.: Ranges for the parameters used to describe the mechanical behavior of
skin including anisotropy [23,60,180]

Parameter Range
µ [kPa] [4.774, 6.804]
k1 [kPa] [3.800, 209.300]
k2 [-] [52.530, 161.860]
κ [-] [0.133, 0.333]
θ [◦] [0, 180]
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5.2.4 Semi-particle approximation

We adopt Bayesian framework to infer the solution of inverse problem. Recall that

we want to infer new x, which is mechanical properties of skin, corresponding to new

y, which is the maximum height of skin deformation measured by Cutometer. Because

we substitute GP regression for a forward function, which causes model uncertainty

induced by surrogate model, it needs to consider uncertainty induced by inference of

posterior distribution through the solution of inverse problem. To address this aspect,

we make use of the approximate solution of the posterior distribution p(x|y,D) such

that [274]

p(x|y,D) ≈ p(x|y, θ∗,D) =
∫

p(y|x, f ) p(f |x, θ∗,D)df p(x) , (5.10)

where θ∗ is obtained by the maximum log likelihood, the prior of x is the uniform

distribution over the range shown in Table 5.1, i.e., p(x) ∝ 1(x), and the likelihood

of new output data y is chosen to be Gaussian such as p(y|x, f ) = N(y|f, σ2I). The

parameter σ2 expresses output error, e.g., measurement noise, and is imposed by

noninformative prior distribution as inverse Gamma distribution such that p(σ) =

IG(σ |α, β) with α = 10 and β = 0.5. Although Eq. (5.10) does not explicitly

represent prior p(σ), inference on σ is also achieved through Bayesian framework.

Recalling that we utilized GP posterior as a forward function, p(f |x, θ∗,D) is also

Gaussian distribution defined by GP posterior.

As we mentioned before, each surrogate output is independent, and therefore

p(y|x, f ) and p(f |x, θ∗,D) can be expressed by multiplication of each component, im-

plying that

p(x|y,D) ≈ p(x|y, θ∗,D) =
15∏

k=1

(∫
p(yk |x, fk) p( fk |x, θ∗k,D)d fk

)
p(x) . (5.11)



139

The evaluation of the above integral is analytically tractable because p(yk |x, fk)

and p( fk |x, θ∗k,D) are both Gaussian distribution, but marginal likelihood of right side

of Eq. (5.11) can be analytically intractable based on prior p(x). In this study, we

assign the noninformative prior p(x) as inverse Gamma distribution. To circumvent

this possible issue, predictive posterior distribution can be represented by MCMC

sampling. We make use of NO-U-Turn sampler (NUTS), which is from Hamiltonian

Monte Carlo algorithm, in PyMC3 [276].

5.2.5 Active learning

If the forward function is expensive, collecting the training dataset itself is a

burden. Accordingly, the size of training dataset can be limited and, consequently,

epistemic error can also be increased [277, 278]. To effectively overcome this limita-

tion, we suggest an active learning for regression problem such that the initial training

dataset is increased point by point based on results of current regression and, then,

the training dataset is updated to build new surrogate and make a regression (Algo-

rithm 1). Our active learning algorithm aims to search new training input point x∗

which is close to not only the maximum posterior point, |µ′k − µk(xr)|, but also high

epistemic error point, σk(xr)2 (line 6 in Algorithm 1). Once x∗ is selected from R,

the corresponding FE simulation is run to acquire output data, and those input and

output pair is added to previous training dataset. This procedure is repeated for all

M = 15 output independently. Staring from n = 100, Algorithm 1 is implemented to

add m = 10 more training data points.

5.3 Results

We test the solution of inverse problem in Eq. (5.11) using Table 5.2, where we

generate 5 test input points by LHS and run FE analysis to obtain the corresponding

output. Before starting the active learning algorithm, the number of initial training
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Algorithm 1 Active learning algorithm with Gaussian process regression

Require: Desired size of active set m, the number of output dimension M, train-
ing dataset Dtk = {xi, fk(xi)}ni=1 at kth output dimension, M independent
Gaussian processes respectively trained by Dt1, . . . ,DtM , mean µk(·) and vari-
ance σk(·)2 from regression by kth Gaussian process, extra input dataset R =
{xn+1, xn+2, . . . , xn+N }

1: for j := 1, . . . ,m do
2: Find x′ as the mean value from Eq. (5.11)
3: for k := 1, . . . , M do
4: Find µ′k = µ

′
k(x
′)

5: end for
6: x∗ ← arg min

xr∈R

∑M
k=1

|µ′
k
−µk (xr )|
σk (xr )2

7: for k := 1, . . . , M do
8: Dtk ← Dtk ∪ {x∗, fk(x∗)}, R← R \ x∗

9: Update kth Gaussian process with Dtk
10: end for
11: end for

dataset n is 100. The corresponding inference per each test dataset is represented in

Figs. 5.2 to 5.6.

The prediction only using initial training dataset can be effectively improved if

active learning algorithm (Algorithm 1) is applied to update the training dataset,

Table 5.2.: Test dataset for the model calibration

No.
Pressure

[kPa]

Mechanical properties Max. height [mm]

µ [kPa] k1 [kPa] k2 [-] κ [-] θ [◦]
Circle
φ2 mm

Circle
φ8 mm

Ellipse
θ + 0◦

Ellipse
θ + 45◦

Ellipse
θ + 90◦

1
30

5.351 175.063 69.145 0.251 137.924
0.530 2.049 1.390 1.579 1.355

40 0.568 2.294 1.503 1.739 1.461
50 0.595 2.434 1.573 1.835 1.527

2
30

4.910 100.771 106.547 0.316 41.569
0.509 2.298 1.528 1.476 1.517

40 0.538 2.581 1.643 1.580 1.629
50 0.558 2.737 1.708 1.640 1.693

3
30

5.965 143.531 91.165 0.155 107.884
0.518 1.801 1.054 1.420 1.505

40 0.560 1.965 1.115 1.518 1.624
50 0.590 2.054 1.153 1.576 1.694

4
30

6.273 71.746 156.563 0.205 178.501
0.545 1.875 1.570 1.307 1.099

40 0.585 2.054 1.709 1.374 1.149
50 0.612 2.137 1.785 1.411 1.179

5
30

6.574 14.143 139.314 0.253 26.804
0.602 1.988 1.582 1.364 1.395

40 0.638 2.326 1.726 1.433 1.469
50 0.662 2.488 1.791 1.468 1.507
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Fig. 5.2.: The solution of inverse problem for first test dataset in Table 5.2 when
the initial training dataset is only given. µ, k1, k2, κ, and θ are the input x and
σ is the standard deviation of distribution for output y. (a) Each plot denotes
probability density function by sampling from predictive posterior distribution. (b)
Autocorrelation per each input x and σ is shown after burn-in.

because the number of training data points is increased based on algorithm, not ar-

bitrary way. Prediction by sampling also shows 94% highest density interval (HDI)
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Fig. 5.3.: The solution of inverse problem for second test dataset in Table 5.2 when
the initial training dataset is only given. µ, k1, k2, κ, and θ are the input x and
σ is the standard deviation of distribution for output y. (a) Each plot denotes
probability density function by sampling from predictive posterior distribution. (b)
Autocorrelation per each input x and σ is shown after burn-in.

in Figs. 5.2a to 5.6a. In addition, each inference by sampling is examined by auto-
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Fig. 5.4.: The solution of inverse problem for third test dataset in Table 5.2 when
the initial training dataset is only given. µ, k1, k2, κ, and θ are the input x and
σ is the standard deviation of distribution for output y. (a) Each plot denotes
probability density function by sampling from predictive posterior distribution. (b)
Autocorrelation per each input x and σ is shown after burn-in.

correlation (Figs. 5.2b to 5.6b). As more sampling is proceeded, the autocorrelation

is decreased, meaning that convergence is achieved.
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Fig. 5.5.: The solution of inverse problem for fourth test dataset in Table 5.2 when
the initial training dataset is only given. µ, k1, k2, κ, and θ are the input x and
σ is the standard deviation of distribution for output y. (a) Each plot denotes
probability density function by sampling from predictive posterior distribution. (b)
Autocorrelation per each input x and σ is shown after burn-in.

To compare Table 5.2 with Figs. 5.2 to 5.6, root mean square error (RMSE)

is calculated for all test dataset (Table 5.3), showing that the Bayesian approach
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Fig. 5.6.: The solution of inverse problem for fifth test dataset in Table 5.2 when
the initial training dataset is only given. µ, k1, k2, κ, and θ are the input x and
σ is the standard deviation of distribution for output y. (a) Each plot denotes
probability density function by sampling from predictive posterior distribution. (b)
Autocorrelation per each input x and σ is shown after burn-in.

is feasible for our inverse problem. Predictions for second and third test dataset

outperform other predictions. By observing each component of prediction, µ, κ, and
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Table 5.3.: Performance on the solution of inverse problem with initial training dataset
is quantified by root mean square error (RMSE). Predictive mean of posterior distri-
bution is compared with the test input dataset shown in Table 5.2.

No. µ [kPa] k1 [kPa] k2 [-] κ [-] θ [◦] RMSE
1 5.4 154 83 0.25 138 11.275
2 4.9 100 114 0.32 42 3.357
3 5.9 139 103 0.16 107 5.681
4 6 119 125 0.2 176 25.438
5 6.4 33 100 0.25 27 19.500

Table 5.4.: Performance on the solution of inverse problem after adding 10% more
training dataset is quantified by root mean square error (RMSE). Predictive mean of
posterior distribution is compared with the test input dataset shown in Table 5.2.

No. µ [kPa] k1 [kPa] k2 [-] κ [-] θ [◦] RMSE
1 5.4 155 81 0.25 138 10.422
2 5.0 93 117 0.32 43 5.860
3 5.9 145 98 0.16 108 3.127
4 5.9 114 126 0.2 172 23.503
5 6.5 27 112 0.25 27 13.501

θ are captured with good accuracy, while k1 and k2 show poor performance. Based

on implication of k1 and k2, which indicate mechanical properties of fiber family,

the deformation by negative pressure on the surface is less sensitive to longitudinal

mechanical characteristics. On the other hand, it can be understood that κ and θ,

which imply dispersion and orientation of fiber family, are more dominant factor for

the deformation. We confirmed that our Bayesian solution to the inverse problem

can capture anisotropic nature of skin as well as hyperelastic feature.

Taking advantage of the active learning algorithm (Algorithm 1), 10% more train-

ing dataset are sequentially collected based on the algorithm. We also make use of

the same test dataset to validate the performance of the active learning algorithm.

With the same manner shown in Figs. 5.2 to 5.6, the solution of inverse problem with

10% more training dataset is represented in Figs. 5.7 to 5.11, respectively. To better

compare the solution with true dataset, Table 5.4 summarizes the performance with
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Fig. 5.7.: The solution of inverse problem for first test dataset in Table 5.2 after adding
10% more training dataset. µ, k1, k2, κ, and θ are the input x and σ is the standard
deviation of distribution for output y. (a) Each plot denotes probability density
function by sampling from predictive posterior distribution. (b) Autocorrelation per
each input x and σ is shown after burn-in.

respect to RMSE, in which effect by adding 10% more training dataset can be quan-
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Fig. 5.8.: The solution of inverse problem for second test dataset in Table 5.2 after
adding 10% more training dataset. µ, k1, k2, κ, and θ are the input x and σ is the
standard deviation of distribution for output y. (a) Each plot denotes probability
density function by sampling from predictive posterior distribution. (b) Autocorre-
lation per each input x and σ is shown after burn-in.

tified. Except second test dataset, adding 10% more training dataset is beneficial to

improve the solution of inverse problem.
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Fig. 5.9.: The solution of inverse problem for third test dataset in Table 5.2 after
adding 10% more training dataset. µ, k1, k2, κ, and θ are the input x and σ is the
standard deviation of distribution for output y. (a) Each plot denotes probability
density function by sampling from predictive posterior distribution. (b) Autocorre-
lation per each input x and σ is shown after burn-in.

More substantial evaluation on the active learning algorithm can be carried out

between different sampling approaches by active learning algorithm and random addi-
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Fig. 5.10.: The solution of inverse problem for fourth test dataset in Table 5.2 after
adding 10% more training dataset. µ, k1, k2, κ, and θ are the input x and σ is the
standard deviation of distribution for output y. (a) Each plot denotes probability
density function by sampling from predictive posterior distribution. (b) Autocorre-
lation per each input x and σ is shown after burn-in.

tion. To do so, 10 more training dataset is generated by LHS and added to the initial

training dataset, and the same procedure to obtain the solution of inverse problem is
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Fig. 5.11.: The solution of inverse problem for fifth test dataset in Table 5.2 after
adding 10% more training dataset. µ, k1, k2, κ, and θ are the input x and σ is the
standard deviation of distribution for output y. (a) Each plot denotes probability
density function by sampling from predictive posterior distribution. (b) Autocorre-
lation per each input x and σ is shown after burn-in.

applied. The results are summarized by the similar manner with that by the active

learning algorithm (Table 5.5), enabling us to validate the performance of the ac-
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Table 5.5.: Solution of inverse problem after adding random 10% more training
dataset is quantified by root mean square error (RMSE). Predictive mean of pos-
terior distribution is compared with the test input dataset shown in Table 5.2.

No. µ [kPa] k1 [kPa] k2 [-] κ [-] θ [◦] RMSE
1 5.4 150 85 0.25 138 13.263
2 4.9 104 108 0.32 41 1.604
3 5.9 141 103 0.16 107 5.427
4 5.8 131 120 0.2 177 31.146
5 6.4 32 103 0.25 27 18.098

tive learning algorithm (compare Table 5.4 with Table 5.5). The second test dataset

only shows better prediction by random increase of training dataset, but other four

points in test dataset obviously undergo outperforming caused by the active learning

algorithm.

5.4 Conclusion

The aim of the study is to make a solution for the inverse problem seeking for

mechanical properties of skin. Making use of suction device, Cutometer, different

shapes of opening entrance are designed by finite element model. We validate that

newly proposed design for opening entrance is appropriate to capture the anisotropic

nature of skin. Finite element model for Cutometer is substituted with Gaussian

process surrogate by seeking for computational efficiency. Bayesian approach has

been a main spirit to suggest the solution of inverse problem and able to provide

sound prediction. We also develop the active learning algorithm to overcome high

computational cost to build high density of training dataset, and the performance of

the active learning algorithm is validated by comparing with that of random sampling.
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6. VIRTUAL SURGERY: OBTAINING ACCURATE

PATIENT-SPECIFIC GEOMETRIES WITH

INEXPENSIVE AND FLEXIBLE IMAGING

TECHNOLOGIES

Abstract: Excessive mechanical stress leads to wound healing complications following

reconstructive surgery. However, this knowledge is not easily applicable in clinical

scenarios due to the difficulty in measuring stress contours during complex tissue

rearrangement procedures. Computational tools have been proposed as an alternative

to address this need, but obtaining patient specific geometries with an affordable and

flexible setup has remained a challenge. Here we present a methodology to determine

the stress contours from a reconstructive procedure on a patient-specific finite element

model based on multi-view stereo (MVS). MVS is a noninvasive technology that allows

reconstruction of 3D geometries using a standard digital camera, making it ideal for

the operating room. Finite element analysis can then be used on the patient-specific

geometry to perform a virtual surgery and predict regions at risk of complications. We

applied our approach to the case of a 7-year-old patient who was treated to correct a

cranial contour deformity and resect two large areas of scalp scarring. The simulation

showed several zones of high stress, particularly near the suture lines at the distal

ends of the flaps. The patient did show delayed healing and partial flap tip necrosis

at one of such predicted regions at the 30-day follow up visit. Our results further

establish the application of computational tools in individualized medical scenarios

to advance preoperative planing and anticipate regions of concern immediately after

surgery.
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6.1 Motivation

Local flaps are routinely used for reconstruction after removal of tumors, birth

defects and hypertrophic scars, to name a few examples [102,279]. The state of stress

influences the healing process and can lead to complications such as tissue necrosis,

delay of healing, and wound dehiscence [2, 3]. However, directly measuring stress in

the operating room is not practically feasible beyond very controlled settings and

ideal clinical cases [6], and stress contours in complex surgeries are not intuitive.

Computational simulations have been proposed to optimize flap design, but have

been limited to idealized and generic cases [14, 16–19]. In clinical practice, general

principles have been established to guide flap design, but every patient requires an

individualized treatment [7,32]. Three-dimensional (3D) imaging tools, such as stereo

vision systems, have been successfully used in biomedical applications, but require

specialized equipment and careful calibration [280, 281]. Recent efforts in computer

vision, however, have led to multi-view stereo reconstruction (MVS), which relies on

a large set of uncalibrated images of a static scene taken from different angles with a

standard digital camera [282]. This technique is accurate, inexpensive, and does not

require a restrictive experimental setup [283], making it ideal for routine clinical use.

To advance preoperative planning and anticipate wound healing complications,

we present an innovative approach that enables individualized reconstructive surgery

simulations based on MVS reconstruction in the operating room. We anticipate that

our approach will enable acquisition of new kinds of data to gain a better under-

standing of how mechanical cues contribute to wound complications in humans, and

to establish new preoperative planning tools based on finite element simulations.
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6.2 Methods

6.2.1 Clinical case

The patient is a 7-year-old female who underwent resection of a giant nevus of

the posterior scalp in infancy, which was complicated by infection and osteomyelitis,

requiring debridement of the occipital calvarium. At the beginning of the current

treatment, she had a cranial contour deformity, residual nevus, and unstable scar

with ulceration and alopecia (Fig. 6.1). Her healthy scalp was expanded to grow

skin that would be needed after excision of the scars. A tissue expander was placed

and filled to 309 ml over 3 months. A cranioplasty implant (Biomet Corporation,

Warsaw, IN) was manufactured using computer tomography (CT) scan data.

Surgery for tissue expander removal, cranioplasty, and resection of residual scar

and nevus was performed. Two portions of the scalp were resected. The cranioplasty

implant was put in place and covered with the skin flaps generated with tissue ex-

pansion. The scalp was closed with absorbable sutures and the patient was seen at

3 and 30 days for follow up visits. A small area of delayed healing developed at the

T-junction of the occipital incision at the 30-day visit (Fig. 6.1). After standard care,

this region healed without further complications.

6.2.2 Patient-specific model based on multi-view stereo reconstruction

The 3D model was created by capturing photos with a standard digital camera

pre and intra-operatively, and processing the images with Recap360 (Autodesk, San

Rafael, CA), a commercial MVS algorithm. The skin configurations captured were:

preoperative, immediately after expander removal, immediately after excision of the

skin defects, and after skin closure (Fig. 6.2).

A CT scan was acquired ahead of the surgery for designing of the cranioplasty

implant. A surface mesh was reconstructed from the CT scan using 3D Slicer [284].

Since the surgery involved only the scalp region, details distant to the scalp were
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Fig. 6.1.: 7-year-old female with residual scarring and a cranial contour defect (a):
Her scalp was grown with a tissue expander (b). Patient at the 3-day follow up visit
after cranioplasty and tissue rearrangement (c) and at the 30-day follow up visit (d).

smoothed out (Fig. 6.3). The 3D model of the skull was modified to correct the

defect, analogous to placing the implant but producing a single geometry. The skull

mesh consisted of 6,807 nodes and 13,608 triangles (Fig. 6.3).

Skin, as most connective tissues, is naturally prestrained [12,116]. The skin geome-

try during surgery, immediately after expander removal, is assumed to be tension-free

and thus taken as the initial geometry for the simulation. Skin excisions were virtu-

ally performed based on the MVS geometries for the various time points of surgery.

The resulting surface was converted into a tetrahedral volume mesh assuming a thick-

ness of 3.6 mm [285]. The final discretization consisted of 35,909 nodes, and 141,497

elements (Fig. 6.3).
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Fig. 6.2.: Patient-specific three-dimensional (3D) geometry generation: For each
model, photographs are taken from multiple angles (a,b,c), then converted to 3D
geometries using Multi-view stereo (d,e,f). Models are generated at different time
points: immediately after expander removal (a,d), after scar excision and cranioplasty
inset (b,e), after skin closure (c,f).

Fig. 6.3.: CT scan data was used to obtain the geometry of the skull (a) and to
complement the skin geometry obtained with multi-view stereo (b). The skull defect
was corrected and a single geometry accounting for both skull and implant was placed
beneath the scalp, and the two large defects were removed from the skin model
according to the surgical procedure (c). The defects were sutured closed by assigning
linear connectors between pairs of nodes (d).

6.2.3 Constitutive model

Skin is a thin transversely anisotropic material that can be described as hyper-

elastic and nearly incompressible [118]. Let points X ∈ Ω0 constitute the reference
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body and points x(X) ∈ Ω the current state. The collagen fiber network in skin has

a preferred orientation e0 in the reference configuration. The deformation gradient

F = ∂x/∂X for nearly incompressible materials is decomposed into isochoric F̂, and

volumetric Fvol parts

F = F̂Fvol , (6.1)

with F̂ = J−1/3F, Fvol = J1/3I, I the second-order identity tensor, and J = det(F)

the volume change. The right Cauchy-Green deformation tensor C is related to the

isochoric component Ĉ,

Ĉ = J−2/3C = F̂>F̂ . (6.2)

We use the strain energy function proposed by Gasser-Ogden-Holzapfel (GOH)

[57] which is a validated model for collagenous tissues including skin [118],

ψ = ψ̂ + ψvol + ψaniso , (6.3)

where ψ̂, ψvol, and ψaniso are the isochoric, volumetric, and anisotropic contributions

respectively. The isochoric term is of neo-Hookean type

ψ̂ =
µ

2
(I1 − 3) , (6.4)

where µ is the shear modulus and I1 = Ĉ : I. The volumetric term is

ψvol =
K
2

(
J2 − 1

2
− ln(J)

)
, (6.5)

where K is the bulk modulus. The anisotropic term accounts for the fiber contribu-

tion,

ψaniso =
k1

2k2

(
exp(k2〈E〉

2) − 1
)
, (6.6)

where k1 describes the tensile response, k2 is dimensionless and expresses nonlinearity

of the fiber response, and κ is the parameter that directly relates to dispersion in the
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fiber orientation distribution. For example, κ = 1/3 indicates isotropy, while κ = 0

means perfectly aligned fibers (fully anisotropic).

E encodes the degree of anisotropy

E ≡ κ(I1 − 3) + (1 − 3κ)(I4 − 1) , (6.7)

where the fiber direction a0 defines the fourth pseudo-invariant,

I4 = a>0 Ĉa0 . (6.8)

Since fibers can only sustain tension, the Macauley bracket 〈E〉 = (|E |+E)/2, was

used in Eq. (6.6). The second Piola-Kirchhoff stress tensor follows directly from the

strain energy,

S = 2
∂ψ

∂C
= Ŝ + Svol + Saniso . (6.9)

Each term in Eq. 6.9 can be expanded,

Ŝ =2
∂ψ̂

∂C
=µ

(
J−

2
3 I − 1

3
I1C−1

)
Svol =2

∂ψvol

∂C
=

K
2
(J2 − 1)C−1

Ŝaniso =2
∂ψaniso

∂C
=2k1 exp(k2〈E〉2)〈E〉

(
κ
∂I1
∂C
+ (1 − 3κ)∂I4

∂C

)
.

(6.10)

Finally, the expression for the Cauchy stress tensor can be obtained by the push-

forward of S,

σσσ =
1

J
FSF> . (6.11)

Parameters matching the specific patient demographic were not available and we

used parameters corresponding to adult female human skin [60]: µ = 4.773 kPa,

K = 2 MPa, k1 = 4.770 kPa, k2 = 161.862, and κ = 0.236. To approximate the fiber

orientation we employed the Cox lines [286].
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6.2.4 Finite element model of reconstructive surgery

Simulations were run using Abaqus Standard (Dassault Systems, Waltham, MA).

The GOH constitutive model is available in this implicit nonlinear finite element

package. The model consisted of 107,727 degrees of freedom. Contact between the

scalp and calvarium was considered frictionless. Stitches were modeled as linear

constraints between pairs of nodes (Fig. 6.3). To match the clinical setting as closely

as possible, mid-thickness nodes in the interior of the domain but close to the edge of

the flaps were selected. The distance between pairs of stitched nodes was gradually

decreased to close the flaps. Skin-skin contact along the suture lines was considered

frictionless. The suturing pattern was assigned manually based on the postoperative

photographs and models (see Figs. 6.1 and 6.2). Suturing in the simulation was done

sequentially. We were not interested in the stress history during scalp closure but

only in the final stress contours. MVS models throughout the closure process were

not captured for the same reason. The displacement of the connectors was assigned

based on the distance between the skin edges in the reference configuration.

We expect that the stress distribution will be sensitive to the fiber dispersion

κ. Thus, we performed two more simulations in addition to using the baseline pa-

rameters: κ = 0 to capture perfectly aligned fibers, and κ = 0.333 for the isotropic

case.

6.3 Results

Fig. 6.4 shows the current configuration for the skin for the three values of κ.

The geometry predicted with the model matches the 3-day follow up photograph (see

Fig. 6.1). The resulting von Mises stress contours and fiber distribution are shown

on the current configuration (Fig. 6.4). The stress patterns are similar for the three

simulations. Five dominant high stress areas are highlighted, and the average stress in

these regions are reported in Table 6.1. Kinks or sharp corners, such as in regions A,

C, and D, experience distortions and high stress values. In the clinical setting, these
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corners can lead to standing cones resulting from differential tissue advancement and

stretch in the middle of the closure, reflected as tissue folding at the corners. We

expect that the high stress due to the discretization and the nodal constraints at

these locations should not have any significant effect on the planning efficacy of the

model as we know clinically that these points are not a concern for the surgeon. In

contrast, distal ends of flaps, such as B and E, are the primary concern [287].

Fig. 6.4.: Current configuration and von Mises stress distribution resulting from the
finite element simulation for three values of the fiber dispersion, κ. The fiber orien-
tation on the scalp is also visualized. The anisotropic case κ of 0.000 leads to the
highest stress at the distal ends of the flaps B and E (left). κ of 0.236 corresponds
to the parameter value taken from the literature (middle). The perfectly isotropic
condition is done by setting κ to be 0.333 (right).
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Table 6.1.: Average nodal stress for regions shown in Fig. 6.4

A (kPa) B (kPa) C (kPa) D (kPa) E (kPa)
κ = 0.000 2.924 4.729 2.979 4.335 3.927
κ = 0.236 2.837 4.117 2.203 3.939 2.563
κ = 0.333 4.724 4.207 1.853 3.247 2.331
Volume (mm3) 2618 4072 8184 2882 7409

6.4 Discussion

Here we demonstrate the finite element simulation of a complex procedure on

a patient-specific geometry. Our approach follows from our previous work on the

mechanical analysis of common flap designs [14]. There is a general consensus that

high stress can result in significant complications [3]. A method to measure skin

tension in the operating room has been recently proposed but requires specialized

equipment, provides only force between two points, and is limited to small defects

[6,8]. Computational simulations are an alternative but have been limited to generic

geometries [17,19,287]. In order to make finite element simulations fully relevant for

the clinical context, patient-specific models are needed. We address this gap with

MVS due to its accuracy, flexibility and affordability [288]. An alternative that we

plan to use in the future are new, portable 3D stereo systems [114].

Human skin is anisotropic and incorporating a fiber distribution in the model is

critical. Clinically, skin tension lines are used to design flaps. We used Cox lines,

but considered an unknown dispersion parameter κ to capture the sensitivity of the

stress to the degree of anisotropy. The highest stresses are achieved if skin is fully

anisotropic (κ = 0). This situation leads to the worst-case scenario and could be used

as an upper bound.

The study considered here showcases the difficulty in anticipating stress contours

in a complex patient geometry, especially when the fiber direction is considered. The

high tissue stresses predicted along one of the limbs of the Y-shaped suture line up to

the T-junction (Fig. 6.4, area E), did manifest clinically as partial flap tip necrosis
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and delayed healing in the follow-up visit (Fig. 6.1). Application of our method

to multiple tissue rearrangement cases is needed to validate the model completely;

nonetheless, our results are encouraging since they are aligned with clinical findings

and surgical judgment.

This study is not without its limitations. The magnitude of the stress profile is

sensitive to the other material parameters in addition to κ. We employed parame-

ters for human skin reported in the literature [23]. However, material properties of

skin vary with age, gender, anatomical location, and from patient to patient [182].

Recently, novel devices have been proposed to test skin noninvasively in order to

estimate the material parameters [8, 27, 289, 290]. These technologies will facilitate

measurement of patient-specific skin parameters in the future to improve the accuracy

of the results.

6.5 Conclusion

We propose a method to anticipate regions at risk of wound healing complications

based on pre and intraoperative 3D patient-specific models generated with MVS. Non-

linear finite element simulations taking skin anisotropy into account can be performed

on this individualized settings to predict the stress distribution on the skin resulting

from reconstructive surgery. A key feature of the proposed approach is that it only

requires a standard digital camera to generate patient-specific 3D models, making

it immediately applicable to clinical settings. Future refinement of this method by

incorporating patient-specific skin parameters will yield a robust instrument for pre-

operative flap design simulation to yield minimal tension at closure and minimize

complications.
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7. RECONSTRUCTION OF THE SCALP: THE

MECHANICAL SIGNATURE OF THE ROTATION FLAP

Abstract: Excessive tension near a wound or sutured region can delay wound healing

or trigger complications. Measuring tension in the operating room is challenging,

instead, non-invasive methods to improve surgical planning are needed. Rotation

flaps are common to correct cleft palate. Multi-view stereo (MVS) allows creation

of patient-specific three-dimensional (3D) geometries based on a set of photographs

taken with any common digital camera. The patient-specific 3D geometry is imported

into a finite element analysis platform to perform a virtual procedure according to

the surgeons plan. The simulation predicts the final geometry after surgery and the

mechanical stress contours over the entire skin surface. Uncertainty in the parameters

can be incorporated, for instance, degree of tissue anisotropy. Two melanoma resec-

tion cases are presented. Preoperative, patient-specific 3D geometries from MVS are

used to perform virtual rotation flap surgeries in both cases. The resulting mechan-

ical tension distribution shows a consistent spatial pattern in both predictions. The

resulting tension is strongly dependent on the degree and direction of anisotropy in

the tissue. The predicted geometry from the virtual surgery shows good agreement

with the geometry captured at the end of the actual procedure performed in these

patients. Mechanical stress profiles over patient-specific geometries can be achieved

through personalized finite element simulations. Patient-specific skin properties are

still a challenge to completely calibrate and validate the models, yet, spatial patterns

of tension are strongly dependent on the flap geometry and can still guide decision

making. Furthermore, noninvasive mechanical testing of skin is becoming increas-

ingly feasible, providing confidence that virtual surgery tools in the clinical setting

can become a reality in the near future.



165

7.1 Motivation

Over 34 million surgeries are performed in the US annually, each one requiring

optimal wound healing [291, 292]. Tissue tension, also termed mechanical stress, is

one of the factors contributing to wound complications costing more than four billion

dollars annually [4]. Animal and in vitro studies have demonstrated that excessive

stress leads to hypertrophic scarring, wound dehiscence, and tissue necrosis [35, 36].

However, we are still unable to quantitatively predict skin stress and deformation

during wound closure in routine clinical practice [8]. Surgeons rely on tactile sensation

and experience to estimate acceptable tension and soft tissue deformation at closure.

Anticipating stress distribution of skin tissues based on preoperative information can

thus help optimize individualized treatment plans.

The head and neck region is one of the most prevalent areas for reconstructive

procedures. For instance, skin cancer is the most common cancer, and 80% of basal

cell carcinomas are in the head and neck [293]. The first option of treatment for

skin cancer is surgical excision, which leaves a skin defect that requires reconstruction

with local flaps, tissue expansion, free flaps, or skin grafting [294,295]. Recently, novel

devices aimed at reducing mechanical stress on wounds have shown decreased scarring

in humans [4]. Success with stress shielding devices for simple wounds underscores

the importance of minimizing stress for optimal healing. However, these devices have

been used for simple, uniform excision patterns in which application of the device

and reduction in stress is straightforward. Planning in the head and neck region is

challenging for large skin lesions because of the anatomical constraints, complex three-

dimensional (3D) geometry, and unique surgical plan and skin mechanics for each

patient. Hence, measuring stress contours and the overall healing result is currently

impossible in the head and neck. To bridge this gap, fortunately, computational

tools and simulation of virtual surgeries have been proposed as a powerful means to

anticipate stress profiles over realistic skin geometries [14, 15].
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Multiple aspects of craniofacial surgery also require understanding of soft tissue

changes under uncertain conditions, such as complex craniofacial cases in which scalp

reconstruction is essential for coverage of hardware, implants, and/or bone graft.

Facial contour change with orthognathic surgery could also benefit from predictive

modeling of soft tissue changes following skeletal movement. A number of predictive

methods using past experience and simple overlay techniques have been described to

estimate these changes [296–299], yet none of them represent a robust model of soft

tissue deformation under stress.

We present two cases of skin cancer reconstruction on the scalp for which rotation

flaps were eventually used as advanced proof of concept in utilizing our methodology

in modeling soft tissue stresses. Our methodology relies on obtaining 3D patient-

specific geometries using multi-view stereo (MVS) [115, 288], a flexible and powerful

algorithm from computer vision that relies on feature matching across photographs

taken from different angles. A commercial finite element (FE) analysis framework is

used to perform the virtual procedure [99]. To investigate the effect of anisotropy, a

fiber distribution field according to Cox lines is imposed [286]. We also investigate

the flap design in idealized geometries in order to isolate the effect of individual flap

parameters on the resulting stress distribution.

7.2 Methods

7.2.1 Clinical cases of melanoma resection in the scalp

Two patients undergoing melanoma resection in the scalp volunteered to partici-

pate in this IRB-approved study. Patient 1 was a 73-year-old adult male, and patient

2 was a 62-year-old adult male. Both patients were scheduled for surgical removal of

melanoma lesions in the scalp. On the day of surgery, photographs of the patients

geometry were acquired preoperatively for 3D geometry reconstruction. A standard

digital camera was used to collect approximately 30 photographs of the patients head
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and neck region from different angles, making sure that the patients remained static

during photograph acquisition.

Intraoperatively, the melanoma lesions were excised together with surrounding

tissue. For patient 1, two regions were excised, one in the frontal scalp measuring

approximately 4.8 cm in diameter, and a second region in the posterior scalp with a

diameter of 2.5 cm. For patient 2, a single lesion was excised, 3.6 cm in diameter,

in the posterior scalp. Rotation flaps were performed in both scenarios to close the

wounds.

In both cases the amount of skin removed prevented primarily closure of the

wounds. In patient 1, the frontal defect was too large to attempt any tissue re-

arrangement strategy, and this wound was instead treated with a skin graft. The

rotation flap in the posterior defect was closed without inducing unacceptably high

tension for patient 1. In patient 2, the rotation flap was not fully sutured closed to

prevent excessive tension in the skin.

7.2.2 Patient-specific computational models of tissue rearrangement

Preoperative photographs were processed with MVS to produce patient-specific

geometries (Fig. 7.1). MVS identifies common points in photographs taken from

different angles and uses these correspondences to solve for the camera positions and

orientations [300]. Then, an optimization routine expands the set of feature points

to recreate a detailed 3D surface of the scene [282].

The preoperative models were used to perform virtual procedures according to

the treatment plan of the patients (Fig. 7.2). Namely, in patient 1, excision of

the two lesions and the surrounding tissue was executed, and the incision pattern

corresponding to a rotation flap for the posterior scalp defect was also created. For

patient 2, a circular region in the posterior scalp was removed and a rotation flap

designed.
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Fig. 7.1.: Preoperative, patient-specific 3D geometry reconstruction of two clinical
cases of melanoma resection: 73-year-old adult male (patient 1) and 62-year-old adult
male (patient 2) were photographed from different angles and multi-view stereo was
used to extract the preoperative 3D scalp geometry.

Volume models were created from the surfaces by considering a thickness of 3

and 3.3 mm for patients 1 and 2 respectively. The final discretization of the model

corresponding to patient 1 consisted of 35, 466 tetrahedral elements and 12, 278 nodes.

The model for patient 2 was made of 75, 282 elements and 25, 394 nodes. In addition

to modeling the skin, a skull geometry was generated to constraint the deformation

and motion of the skin during the simulation. The 3D skull geometry was considered

as a rigid body, i.e., no deformation of the bone was allowed.

7.2.3 Finite element analysis

Skin, like all soft connective tissues in the human body, shows nonlinear and

anisotropic mechanical behavior dominated by the preferred orientation of collagen

fibers in the dermis [45,301,302]. We incorporate this response into our model using

the material model proposed by Gasser, Ogden and Holzapfel (GOH) [59, 118]. The
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Fig. 7.2.: Preoperative patient-specific models were processed to virtually execute the
treatment plan. Patient 1 underwent resection of two skin lesions, one posterior and
one anterior. A posterior defect was removed in the scalp of patient 2. Sutures are
imposed in a finite element framework to closely recreate the clinical setting.

FE simulations were run using the commercial software package Abaqus Standard

(Dassault Systems, Waltham, MA).

Mechanical properties of skin change with age, gender, anatomical location, and

even from one patient to another. Based on measurements of skin mechanics available

in the literature, and considering the age and gender of both patients in this study,

parameters for a 44-year-old male from the literature were assigned [23, 51, 60]. Un-

fortunately, the experimental datasets of skin mechanics in vivo are still limited and

patient specific parameters were unavailable. Tissue anisotropy was also taken into

consideration. Similarly to the choice of material properties, the fiber orientation was
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assigned based on previous work which showed that Cox lines are a suitable indicator

of anisotropy in the scalp [286].

The FE simulations solves the mechanical equilibrium problem corresponding to

the manipulation of the tissue and closing of the defect. To closely match the clinical

procedure, sutures are imposed by constraining the nodes on the opposite edges of

the flap (red lines in Fig. 7.2). During the virtual tissue rearrangement process, the

skin is allowed to slide over the skull geometry assuming frictionless contact.

7.2.4 Rotation flap design optimization

In the two patient-specific scenarios, the design of the flap was based on the

preoperative plan. However, one of the advantages of computer models is the ability

to simulate alternative scenarios. We created a general simulation of a rotation flap

with the parameters shown in Fig. 7.3). We then investigated the sensitivity of the

predicted tissue tension by varying the parameters of the flap design. Namely, we

considered three parameters: the angle of rotation φ, the orientation of the flap with

respect to the skin tension lines θ, and the normalized length of the back cut c/r.

7.3 Results

7.3.1 Patient-specific models

Fig. 7.4 shows the comparison between the postoperative result obtained with

the virtual model, and the real postoperative geometry. The contour plots on the FE

model represent the mechanical stress distribution on the skin. In particular, here we

show the maximum principal stress distribution, which is a metric of stress typically

used in engineering design.

The geometries predicted in Fig. 7.4 align with the postoperative photographs.

For patient 1, the stress profile is approximately 30 kPa near the distal end. Only a

few points exceeded stress values of 100 kPa. There is also a small stress concentration
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Fig. 7.3.: General rotation flap design parameterized by three variables. Rotation
angle φ, orientation with respect to skin tension lines θ, and relative back cut length
c/r

at the base of the flap. The simulation for patient 2 shows higher stresses compared

to patient 1. For patient 2, the distal end of the flap in patient 2 show stresses

around 90 kPa, with a few points reaching 180 kPa. The reason for this difference

can be attributed to the anatomical constraints present in the second case. The

rotation flap for patient 2 was designed close to the left ear. As a consequence, skin

was stretched more in order to close the flap of patient 2, inducing larger stress,

and preventing closure along the entire flap contour, just as it occurred during the

actual procedure. For comparison, previous work on a porcine model established that

stresses of approximately 200 kPa led to hypertrophic scarring [4]. No similar data

exists for human wounds.

Despite differences in defect size and patient geometry, the rotation flap in the

patient geometries induced high stress at the distal end. In the second patient, this

tension extended to the proximal end of the flap, forming a continuous band of high

stress. In patient 1, on the other hand, while there was a stress concentration at the

base of the flap, there was not a band of high tension across the entire flap.
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Fig. 7.4.: Postoperative geometries for the two clinical cases presented in this study.
The left column shows photographs taken immediately after the tissue rearrangement
procedure. The results of the finite element simulation predict final geometries con-
sistent with the real procedure as well as associated mechanical stress contours. For
patient 1, a stress concentration occurs at the distal end, with maximum principal
stress averaging 30 kPa. For patient 2, a band of high stress connects the proximal
and distal regions.

7.3.2 Generic rotation flap model

The general rotation flap model depicted in Fig. 7.3 is used to evaluate the

influence of individual flap parameters on the mechanical stress distribution. For

consistency, we refer to the edge adjacent to the back cut (c) as the proximal edge

of the flap, and the edge towards the defect into which the flap is to be rotated (r)

as the distal edge of the flap (see Fig. 7.3). Fig. 7.5 shows three simulations of

the general rotation flap for three flap orientations θ = 0◦, 45◦, 135◦ with respect to
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Fig. 7.5.: General rotation flap simulations show that flap orientation with respect
to relaxed skin tension lines (anisotropy direction) is the most important parameter.
Depending on flap orientation there is either no stress at the distal end, or, in the
worst-case scenario, a stress band can extend from the proximal to the distal end.

the anisotropy direction. Fig. 7.6 shows the variation in stress when the angle of

rotation is φ = 30◦, for three different relative back cut lengths and three different

fiber orientations. Fig. 7.7 shows nine simulations with the angle of rotation φ = 45◦,

varying the other parameters. Finally, Fig. 7.8 shows nine more simulations with the

angle of rotation φ = 60◦. From this array of simulations, it is clear that the fiber

angle is the most sensitive parameter. Accordingly, the variation in the stress profile

for the different fiber angle is reported as seen in Fig. 7.5.

Based on our simulations, we identified the orientation of the flap with respect to

the skin tension lines to be the most important choice during flap design. In all cases,

we see a stress concentration at the base, with a band of high stress aligned with

the fiber orientation. These results suggest that, in an ideal setting, the rotation flap

should not lead to high stress at the distal end. Instead, higher stresses are expected

at the base of the flap. However, if the skin tension lines extend across the flap,
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Fig. 7.6.: Variation in stress profile for the angle of rotation φ = 30◦ and changing
the other two parameters, the relative back cut length c/r and the fiber orientation
θ.

from the distal to the proximal end, a band of high stress can connect the two ends.

Comparison between the ideal flap design and the patient-specific simulations also

underscores the importance of anatomical constraints in the patient cases. Based on

the simulations shown in Figs. 7.5 to 7.8, orientation the flap such that the fibers

are horizontal with respect to the rotation, θ = 0◦, and designing the flap with the

smallest angle of rotation, φ = 30◦ in this case, leads to the smallest tension.

7.4 Discussion

The objective of this study was to create patient-specific FE models to anticipate

mechanical stress distributions resulting from tissue rearrangement surgeries. The
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Fig. 7.7.: Variation in stress profile for the angle of rotation φ = 45◦ and changing
the other two parameters, the relative back cut length c/r and the fiber orientation
θ.

models of two skin cancer patients were created based on the preoperative geometry

captured via MVS. This computer vision technology relies only on a set of photographs

taken with any standard digital camera. In the cases presented here, a smartphone

camera was used. We have previously shown that MVS reconstruction induces small

errors, less than 10% [196], and with an average of 2% [116]. Therefore, MVS offers

a flexible and easy-to-use methodology to create accurate preoperative models of

reconstructive surgery [99]. Alternatives include 3D cameras, which are becoming

common in clinical practice [97,114].

The simulation of the tissue rearrangement step requires the definition of the

skins material behavior. The lack of patient-specific material properties is certainly

one limitation of the present study. The parameters used here were based on re-
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Fig. 7.8.: Variation in stress profile for the angle of rotation φ = 60◦ and changing
the other two parameters, the relative back cut length c/r and the fiber orientation
θ.

ports of skin mechanical properties available in the literature [23, 51, 60]. However,

material parameters are expected to vary with age, gender, and anatomical loca-

tion [184]. Therefore, measuring individual properties is essential to create truly

patient-specific models. Fortunately, new technologies are being developed, which

enable noninvasive measurement of skin mechanics in vivo [27, 303]. Even in the

absence of patient-specific geometries, the predicted geometry from our simulations

matched qualitatively the postoperative photographs. Our simulations showed that,

due to the anatomical constraints in the second scenario, higher stresses were ex-

pected for patient 2 compared to patient 1. In fact, the rotation flap for patient 2

could not be fully sutured due to concerns that the tension on the skin was too high.
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Furthermore, the values of stress we computed align with what has been reported for

porcine models of excisional wounds closed under tension [3, 4].

The most interesting finding from this study is the critical effect of anisotropy

and anatomical constraints in the resulting stress pattern. We created simulations

of a general rotation flap design and varied three parameters. We found that, in the

ideal case, the rotation flap should not lead to high stress at the distal edge when

the angle of rotation is small and the flap is oriented such that skin tension lines are

horizontal with respect to the direction of rotation. Conversely, we saw that if the

skin tension lines are aligned obliquely, a band of high stress can extend over the

flap, towards the distal edge, potentially leading to complications. The ideal rotation

flap simulations showcase the use of FE to optimize flap designs, but, at the same

time, comparison with patient-specific cases revealed the importance of individual

anatomical constraints. This information is essential to optimize outcomes of flap

design in areas where high tension is anticipated, which is often observed in scalp

reconstruction. Although techniques such as galeal scoring and wide undermining

can also decrease final tissue tension, orientation of the flap relative to tissue tension

lines is a key parameter which is often overlooked during flap design. Table expansion

can be utilized to further stretch the flap, and this technique could be incorporated

through preoperative FE analysis of flap design. Pre-planning flap orientation with

the aid of FE analysis can optimize the final reconstruction and extend the outcomes

of traditional means for relaxing tissues during flap transfer.

These two cases of reconstruction after cancer resection demonstrate the workflow

in the simplest setting, i.e., one layer of skin (ignoring galea) over a non-deformable

surface (the calvarium). By incorporating the multiple planes of the face and their re-

spective tissue qualities, we hope to apply these concepts to modeling soft tissue stress

as applied to all areas of head and neck reconstruction. Reliable scalp reconstruc-

tion is essential for coverage of hardware, implants, and/or bone graft in craniofacial

surgery, and by facilitating preoperative planning for scalp advancement, significant

complications could be avoided. Facial contour change with orthognathic surgery is
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often evaluated in retrospect, and predictive modeling of soft tissue changes following

skeletal movement could greatly improve patient expectation and outcomes.

7.5 Conclusion

Mechanical stress profiles over patient-specific geometries can be achieved through

personalized finite element simulations. Furthermore, simulations of defects treated

with rotation flaps show that smaller rotation angles and orienting the flap such that

the skin tension lines are horizontal with respect to the flap leads to the lowest tension.

Such applications of finite element models could significantly improve outcomes of

scalp coverage over implants and/or hardware, and prediction of soft tissue contour

following orthognathic surgery. Our analysis shows that flap orientation with respect

to skin tension lines and anatomical constraints are crucial to minimize excessive

tension.
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8. UNCERTAINTY PROPAGATION THROUGH

VIRTUAL SURGERY SIMULATION

Abstract: Excessive mechanical stress following surgery can lead to delayed healing,

hypertrophic scars, and even skin necrosis. Measuring stress directly in the operating

room over large skin areas is not feasible and nonlinear finite element simulations have

become an appealing alternative to predict stress contours on arbitrary geometries.

However, this approach has been limited to generic cases, when in reality each patient

geometry and procedure is unique, and material properties change from one person

to another. In this manuscript, we use multi-view stereo to capture the patient-

specific geometry of a 7-year-old female undergoing cranioplasty and complex tissue

rearrangement. The geometry is used to setup a nonlinear finite element simulation

of the reconstructive procedure. A key contribution of this work is incorporation

of material behavior uncertainty. The finite element simulation is computationally

expensive and it is not suitable for uncertainty propagation which would require many

such simulations. Instead, we run only a few expensive simulations in order to build

a surrogate model by Gaussian process regression of the principal components of the

stress fields computed with these few samples. The inexpensive surrogate is then used

to compute the statistics of the stress distribution in this patient-specific scenario.

8.1 Motivation

Complications such as delayed healing, wound dehiscence, and hypertrophic scar-

ring are associated with excessive mechanical stress near a wound [2,3]. Unfortunately,

measurements of stress in the operating room are not yet practically possible outside

of very particular scenarios [6]. Instead, surgeons have to rely on their manual esti-

mation to anticipate regions at risk of complications. However, tissue rearrangement



180

procedures often lead to nonintuitive stress distributions, for example, following tis-

sue expansion [287,304]. Without predictive tools, wound healing complications and

suboptimal healing outcomes will continue to be a concern.

To overcome this challenge, finite element (FE) simulations of reconstructive

surgery have started to gain popularity in recent years [17,287,305]. In our previous

work, we have advanced this field of application by considering three-dimensional ge-

ometries and nonlinear material and geometric response, but an important limitation

has been the use of a single set of material properties on ideal scenarios. In reality,

each patient has a unique geometry and requires an individualized procedure, and

skin mechanical properties vary considerably with age, gender, and from one person

to another [1, 182,306].

In this manuscript, we use multi-view stereo (MVS) to capture the patient-specific

geometry of a 7-year-old female undergoing a cranioplasty procedure with complex

tissue rearrangement following skin expansion. This individualized geometry is one of

the ingredients for our nonlinear FE model. The other requirement is the constitutive

law to describe skins mechanical behavior. Skin is a collagenous tissue, and the

strain energy originally proposed by Gasser-Ogden-Holzapfel (GOH) [57] to describe

arteries has been determined appropriate for skin tissues as well [60, 180]. However,

patient-specific material response is often not available. To rigorously assess the effect

of material behavior uncertainty on the expected stress distribution, one approach

is to run a large number of simulations to compute the relevant statistics. The

patient-specific FE model is too computationally expensive for this kind of brute-force

analysis. Instead, we run only a few of these expensive simulations to sample a broad

parameter space and interpolate the stress fields from these sampled points using a

Gaussian process regression (GPR) [274, 307]. The surrogate model constructed in

this manner is inexpensive and can be easily used to quantify the effect of material

behavior uncertainty in our patient-specific reconstructive surgery model.

Surrogate models have been used for engineering applications such as battery

life prediction, multi-physics simulations in nuclear engineering, and solar irradiation
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prediction, to name just a few examples [308–310]. Surrogates based on nonlinear FE

simulations have been used in multidisciplinary design optimization problems where

a large number of function evaluations are needed to find a local minimum [311], or

in the study of other physical processes such as impact dynamics and combustion

[312]. GPR is a Bayesian method based on the assumption that the stress field

response as a function of the parameter space is a sample from a random field [307].

This prior assumption is combined with inputoutput observations using Bayes rule.

The resulting posterior Gaussian process (GP) captures our state of knowledge after

observing the simulation data. In addition, the Bayesian nature of the GPR allows

the quantification of the epistemic uncertainty induced by the limited simulation data.

In this study, the quantity of interest is the stress field over the FE mesh. How-

ever, the geometry of realistic patient-specific clinical scenarios consists of hundreds

of thousands of nodes. Thus, trying to interpolate the response surface in this high-

dimensional space is inefficient, it would require learning thousands of scalar func-

tions. An additional step is needed to circumvent this issue. Physics-based phe-

nomena usually have an underlying simpler structure or dominant modes [313]. The

high-dimensional result from the FE simulation can then be projected onto this low-

dimensional space. Here, we show that principal component analysis (PCA) can be

used to identify the low-dimensional space needed for the GPR step [187].

8.2 Methods

8.2.1 Constitutive model

Skin, like most collagen-based soft tissues, can be described as a hyperelastic,

anisotropic and nearly incompressible material [118]. Skin shows a typical nonlin-

ear response characterized by an exponential-like stress-strain curve associated with

a gradual straightening of the initially undulated collagen fiber network [178]. Sev-

eral constitutive equations have been proposed over the past decades to describe

biological tissues, and there is an increasing emphasis on constitutive models based
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on microstructure considerations [314]. At the same time, these models need to

be computationally efficient, and there is a tradeoff between explicitly considering

fiber orientation distributions versus simplified, integral descriptions of the fiber fam-

ilies [60,63,178,315]. A widely adopted strain energy function that has been deemed

appropriate to describe skin is the one proposed by GOH [57]. Before introducing

the expression for the strain energy, we briefly summarize the continuum mechanics

framework for skin modeling. Let points χχχ ∈ Ω0 constitute the reference body and

points x(χχχ) ∈ Ω the current state. The deformation gradient F = ∂x/∂χχχ contains

the local information of the motion. In the reference configuration, the preferred

fiber orientation is a0, and this vector is mapped to a = Fa0 in the current state. For

nearly incompressible materials we decompose the deformation gradient into isochoric

F̂, and volumetric Fvol parts,

F = F̂Fvol, (8.1)

with F̂ = J−1/3F, and Fvol = J1/3I. The second-order identity tensor is denoted I, and

J = det(F) is the volume change. The right Cauchy-Green deformation tensor C can

also be split to obtain its isochoric part

Ĉ = J−2/3C = F̂>F̂ . (8.2)

We can now introduce the GOH strain energy

ψ = ψ̂ + ψvol. (8.3)

Due to the assumptions of near incompressibility, the strain energy is decomposed

first into two contributions, ψ̂, and ψvol, which correspond to the isochoric and vol-

umetric terms respectively. The isochoric term is further decomposed into isotropic

and anisotropic contributions, ψ̂ = ψ̂iso + ψ̂aniso. The isotropic part is modeled as a

neo-Hookean material

ψ̂iso =
µ

2
(I1 − 3) , (8.4)
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where µ the shear modulus, and I1 = Ĉ : I is the first invariant of Ĉ. The volumetric

term is also standard for nearly incompressible neo-Hookean materials

ψvol =
K
2

(
J2 − 1

2
− ln(J)

)
, (8.5)

with K the bulk modulus. The isotropic and volumetric terms jointly describe

the underlying isotropic material in which the collagen network is embedded. The

anisotropic term of the strain energy is then associated with the behavior of the

collagen network,

ψ̂aniso =
k1

2k2

(
exp(k2〈E〉

2) − 1
)
, (8.6)

where

E ≡ κ(I1 − 3) + (1 − 3κ)(I4 − 1) (8.7)

captures the deformation of the fiber family.

The fibers have a preferred orientation a0 in the reference configuration, but not

all fibers are necessarily aligned with this direction, instead, they are distributed

with a dispersion κ. When κ = 0 the fibers are perfectly aligned parallel to a0, and

when κ = 1/3 the fibers are distributed isotropically and the fiber direction a0 carries

essentially no information. The microstructure parameter κ acts thus as a weight

of two invariants of Ĉ. The first invariant was introduced before in Eq. (8.4). The

fourth pseudo-invariant appearing in Eq. (8.7) is the stretch along a0,

I4 = a>0 Ĉa0 . (8.8)

The anisotropic response is fully parameterized by k1 and k2. These parameters

can be associated with a physical interpretation. k1 is related to the tensile properties

of the fiber family, and k2 is a parameter of nonlinearity of the fiber family.
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The second Piola-Kirchhoff stress tensor for a hyperelastic material can be imme-

diately retrieved from the strain energy function,

S = 2
∂ψ

∂C
= Ŝiso + Svol + Ŝaniso . (8.9)

For completeness we expand each term,

Ŝiso = 2
∂ψ̂

∂C
= µ

(
J−

2
3 I − 1

3
I1C−1

)
,

Svol = 2
∂ψvol

∂C
=

K
2
(J2 − 1)C−1 ,

Ŝaniso = 2
∂ψaniso

∂C
= 2k1 exp(k2〈E〉2)〈E〉

(
κ
∂I1
∂C
+ (1 − 3κ)∂I4

∂C

)
.

(8.10)

In what follows we report the von Mises stress as a convenient scalar measure

of the stress distribution in our reconstructive surgery simulations. Thus, we push

forward the second Piola-Kirchhoff stress tensor to get the Cauchy stress tensor,

σσσ =
1

J
FSF> . (8.11)

Taking into account all the contributions to the strain energy, the material re-

sponse is parameterized by µ, K, k1, k2, and κ. We choose the value of K to be the

largest possible value that still guarantees convergence of the FE simulation while

penalizing volume changes as much as possible. Since K is essentially a penalty term

for the volume change, a large K enforces incompressible behavior more closely. The

parameter κ is set to 1/3 or, equivalently, the fiber family is considered isotropically

distributed. This assumption is made in part because we lack information of the pre-

ferred orientation a0. More importantly, based on published reports of human skin

mechanical behavior and microstructure, the collagen fiber family does have a pre-

ferred orientation but with a large dispersion [60, 180], hence approximating κ = 1/3

is reasonable. Table 8.1 summarizes the range of GOH model parameters for human

skin based on the literature [60, 180].



185

Table 8.1.: Range of Gasser-Ogden-Holzapfel model parameters based on Ref. [60,180]

Parameter Range Mean
µ [MPa] [0.004774, 0.2014] 0.04498
k1 [MPa] [0.000380, 24.530] 4.9092
k2 [-] [0.133, 161.862] 76.64134

To showcase the nonlinearity of the material response and the effect of uncertain

material properties we show the stress-stretch curves for three different tensile tests:

uniaxial, off-biaxial, and equibiaxial. Analytical solutions are easily computed for

these cases and incompressibility can be imposed exactly. We use λxx, λyy, and λzz to

indicate the amount of stretch with respect to the x, y, and z directions, respectively.

The corresponding normal stresses are σxx, σyy, σzz. The uniaxial test is defined by

setting σyy = σzz = 0 and varying λxx. In the off-biaxial case we set σzz = 0 and

λyy = 1. For the equibiaxial case σzz = 0 and λyy = λxx. Solid lines in Fig. 8.1

correspond to the material response when the parameters are chosen to be the mean

reported in Table 8.1. To showcase the importance of material parameter uncertainty

in these simple scenarios, the parameters are assumed uniformly distributed over the

range presented in Table 8.1, and 5,000 values of the parameters are sampled. The

gradient shading in the plots of Fig. 8.1 represents varying percentile from 2.5 to 97.5

of the resulting stress distribution.

8.2.2 Patient-specific model

In this study, we present the case of a 7-year-old female who underwent resection

of two large portions of the scalp together with cranioplasty. The patient originally

had resection of a giant congenital pigmented nevus in infancy that was complicated

by infection and led to the debridement of the occipital calvarium. At the time of

the treatment presented here, the patient needed correction of the contour deformity

of the cranium, had residual nevus at the incision, and unstable scar with ulceration

in two regions of the scalp. During the surgery, an occipital Y-shaped scar and a
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Fig. 8.1.: Analytical solution of (a) uniaxial tensile test, (b) off-biaxial tensile test,
and (c) equi-biaxial tensile test to showcase the Gasser-Ogden-Holzapfel model. 5,000
triads (µ, k1, k2) are drawn from a uniform distribution over the range in Table 8.1.
The gradient shading indicates varying percentile of stress value at each stretch.

right temporal C-shaped scar were resected, and the cranium defect was fixed with a

polymer implant.
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We use MVS to capture the three-dimensional (3D) geometry of the patient at

different time points of the treatment. MVS is based on capturing two-dimensional

(2D) pictures of a static object or scene from multiple angles. Feature matching

across pairs of photographs then provides information to solve for the camera posi-

tion and orientation, and once this is solved for many more points can be projected

and matched between photos to generate a dense 3D point cloud [282]. Geometries

generated with Recap360 (Autodesk, San Rafael, CA) are shown in Fig. 8.2 (first

row). Photos were taken pre, intra and postoperatively in order to document the

entire treatment with 3D snapshots. Importantly, skin, like most biological tissues,

is prestrained in vivo. Skin after expander removal is in a relaxed configuration and

this geometry was taken as the reference and assumed stress-free.

In addition to the visible patient-specific geometry obtained with MVS, this par-

ticular case was not limited to superficial tissue rearrangement but required correction

of the cranium. We reconstructed the skull geometry from a CT scan that had been

used clinically to design the polymer implant (Fig. 8.2, second row).

As shown in Fig. 8.2 (third row), we performed some post-processing steps to

eliminate unnecessary parts and simplify the patient-specific geometry without los-

ing any essential information. Geometry simplification was done with Meshlab [316]

and Blender (Amsterdam, the Netherlands). The Y-shaped scar and right temporal

C-shaped scar were removed in our virtual procedure based on the 3D models taken

intraoperatively. The triangular surface was converted to a volumetric mesh by con-

sidering a thickness of 3.6 mm. This value of thickness has been reported for young

females [285]. The skin consisted of 9,962 nodes and 30,328 tetrahedral elements.

Finally, the simplified skull, which consisted of 6,807 nodes and 13,608 triangular

elements, was positioned inside the scalp mesh as shown in Fig. 8.2 (last row).
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Fig. 8.2.: For multi-view stereo (MVS) reconstruction, photos captured from several
angles are used to generate a 3D geometry (1st row); A CT scan was used to generate
the skull geometry (2nd row); Skin after tissue expander removal was assumed stress-
free and used as reference, the MVS and CT scan geometries were combined and
simplified (3rd row); Scalp defects were removed based on the intraoperative MVS
models and the scalp mesh was converted to a volume mesh (4th row).

8.2.3 Finite element simulations

We used Abaqus Standard (Dassault Systems, Waltham, MA), an implicit nonlin-

ear FE commercial software package, to run the reconstructive surgery simulations.

The skull mesh was defined as a rigid body and its position fixed. The skin was mod-

eled as hyperelastic and described by the GOH strain energy function. To prevent
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rigid body motions and also to capture a realistic procedure, the skin away from the

operated region was fixed.

Interaction between the scalp and skull during the surgical procedure was modeled

as frictionless contact. Sutures were imposed as axial kinematics constraints between

pairs of nodes. Namely, the nodes at the edge of both sides of a scar were paired and

the distance between them was linearly decreased to simulate the clinical procedure.

8.2.4 Gaussian process regression

Mechanical properties of skin vary not only with age, gender, and anatomical

location, but also from one patient to another [182]. Therefore, accounting for un-

certainty in the material properties of skin is essential when analyzing the stress

distribution caused by reconstructive surgery. Propagating the uncertainty of the

material behavior through a detailed, realistic, and nonlinear model of a surgical pro-

cedure, to characterize the resulting stress distribution, is the central contribution of

this manuscript.

As pointed out in Section 8.2.1, the GOH model requires three independent param-

eters, µ, k1, k2, when the material under consideration is assumed isotropic. Table 8.1

contains the mean and the range for each parameter. We assume that the parameters

are uniformly distributed within the range shown in Table 8.1, and we use the Latin

hypercube sampling (LHS) algorithm to draw samples from this three-dimensional

parameter space [317]. We generate a total of N training samples in the parameter

space. We generate a total of N training samples in the parameter space. N should be

chosen with consideration of whether N training samples cover the parameter space.

In practice, given an initial choice of N, the performance of the surrogate is evaluated

to determine whether or not it is within a desirable tolerance. If this is not the case,

the training set can be increased iteratively until the desired error is achieved. Let
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x(n) =
(
µ(n), k(n)1 , k(n)2

)
be one point generated by LHS, the total training data can be

arranged as

X =
(
x(1), · · · , x(N)

)
∈ R3×N . (8.12)

Each column of Eq. (8.12) is used to run one FE simulation on the patient-specific

model, and, in consequence, generates a M-dimensional nodal stress output σ(n) ∈ RM

associated with x(n). The total stress output matrix σ =
(
σ(1), · · · ,σ(N)

)
∈ RM×N is

first centered by subtracting the mean of each row of σ from the corresponding row.

Let s(n) be the centered stress output, thus, the full output stress data from the

training set can be expressed as

S =
(
s(1), s(2), · · · , s(N)

)
, S ∈ RM×N . (8.13)

The mesh has a large number of nodes, in consequence, s(n) has a high dimension

M , and learning the response surface that connects the input X to the output S,

is problematic in this space. Instead, we seek to reduce the dimensionality of the

output data. The stress contours on the patient geometry are the result of a physics-

based simulation, and we expect the solution of this kind of problem to have a small

number of fundamental modes or features [313]. Hence we perform PCA to reduce

the dimension of the output data [187]. Let W be the linear transformation

WS = Y , (8.14)

where W ∈ RM×M is the transformation matrix and Y ∈ RM×N is the principal

component (PC) score matrix. Recall the singular value decomposition (SVD) of S ,

S = UΣV> , (8.15)

where U ∈ RM×M is an orthogonal matrix, Σ ∈ RM×N is a rectangular diagonal matrix

with non-negative real numbers on the diagonal, and V ∈ RN×N is also an orthogonal

matrix. The columns of U are the orthonormal eigenvectors of SS>, and the columns
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of V are orthonormal eigenvectors of S>S. They are also called left- and right-singular

vectors of S. The diagonal entries of Σ are called the singular values of S, they are the

square roots of the eigenvalues of SS> and S>S, and are sorted in decreasing order.

Rearranging Eq. (8.15) as

U−1S = U>S

= ΣV> ,
(8.16)

and comparing with Eq. (8.14) we arrive at

U>S = Y . (8.17)

The rows of W = U> are called the PC, and the rows of Y are called the PC

scores and they are the projection from the original data, S(n), to the PC basis. Since

the data has been centered prior to the SVD, scaling the square of the singular values

by 1/(N − 1) represents the variance in the data. In other words, the singular values

express how the information of each column of S is distributed when expressed in

the PC basis. Thus, choosing a certain criterion, for instance wanting to capture

99% of the total variance in the data, the first singular values are kept and the rest

of the PC are ignored. This truncation of the linear space is also typical in image

compression algorithms [318]. The truncated basis W′ has dimensions M′ × M, and

the corresponding PC scores are

Z =
(
z(1), · · · , z(N)

)
∈ RM ′×N (8.18)

by substituting W′ instead of W into Eq. (8.14). If the variance is concentrated in a

few PC, then M � M′ and a significant reduction of the dimensionality of the data

is achieved (Compare Eq. (8.18) with Eq. (8.13)).

Let D ≡ {(x(n), z(n))}Nn=1 be the set made out of the training input parameters x(n)

paired with their corresponding observation of the truncated PC score z(n), obtained

from the FE simulation and PCA. In what follows, we seek to learn a scalar function
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for each of the PC scores, M′ functions in total. We look at the mth PC score; zm

∈ RN is the vector with all the training observations for that score. We assume that

for any one of those observations, the following relation holds

z(n)m = fm
(
x(n)

)
+ εm , (8.19)

where εm =
(
ε
(1)
m , . . . , ε

(N)
m

)
∈ RN has independent and identically distributed Gaussian

noise with zero mean and variance σ2
ns,m. The Gaussian noise models the discrepancy

between the surrogate and the FE simulation output in order to enhance numerical

stability in factorization of the covariance matrix including the Gaussian noise [319].

We model our prior state of knowledge about fm using a Gaussian process (GP),

fm(·) ∼ GP(µm(·), km(·)) , (8.20)

where µm(·) and km(·) indicate mean and covariance functions respectively. Briefly,

The GP means a collection of random variables in which any finite gathering has a

joint Gaussian distribution [307]. Because the GP is postulated to have a zero mean

function [313], the prior GP is a multivariate normal distribution of the values of fm(·)

at X:

fm(X) ∼ N(0,Km), (8.21)

where Km is an N × N covariance matrix. In this study, a radial basis function is

utilized as kernel, such that the components of the covariance matrix are

Km(i, j) = km(x(i), x( j); θm)

= s2f ,mexp

(
−1

2

(
x(i) − x( j)

)>
Λ−1m

(
x(i) − x( j)

)) (8.22)

with Λm = diag(lm,1 , lm,2 , lm,3 ). In particular, s2f ,m is the process variance and lm,1 ,lm,2 ,

and lm,3 are characteristic length-scales for each of the inputs. We have to estimate the
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hyperparameters θm = (s2f ,m, lm,1 , lm,2 , lm,3 , σ
2
ns,m ). These are found by maximizing

the logarithm of the likelihood of zm,

log p(zm |X, θm) := −1

2
z>mΣ−1m zm −

1

2
log|Σm | −

N
2

log2π . (8.23)

Σm = Km + σ
2
ns,mI is a covariance matrix with Gaussian noise, and |Σm | is the

determinant of Σm. After deciding a point estimate on θm, the use of Bayes’ theorem

combines the prior GP with the likelihood to bring the posterior GP. Bayes’ theorem

states that prior probability is converted to posterior probability by incorporating the

evidence such as training data.

Now, we are ready to perform GPR which enables a point-wise prediction. To

be specific, the posterior GP for any parameter input x(∗) is defined by Gaussian

distribution,

fm
(
x(∗)

)
|D, x(∗), θm ∼ N

(
µm(x(∗); θm), σ2

m(x(∗); θm)
)
, (8.24)

where the predictive mean and variance are

µm(x(∗); θm) = k>mΣm
−1zm (8.25)

and

σ2
m(x(∗); θm) = k(x(∗), x(∗); θm) − k>mΣm

−1km , (8.26)

respectively, and the vector km is defined as

km =
(
k(x(∗), x(1); θm), · · · , k(x(∗), x(N); θm)

)
. (8.27)

In conclusion, for any parameter input x(∗), Eq. (8.24) predicts the expected mth

PC score µm(x(∗); θm), as well as the error bars for the predictive mean which are given

by the predictive variance σ2
m(x(∗); θm).
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Step 1 in the schematic of Fig. 8.3 summarizes how to build the surrogate model.

The validation of the surrogate, denoted as Step 2 in Fig. 8.3 is discussed next.

Briefly, once the surrogate has been constructed, we generate a new set

Xv =
(
x(1)v , · · · , x(Q)v

)
∈ R3×Q (8.28)

of Q validation inputs. Typically, N and Q are chosen to be 70% and 30% of the data,

respectively. In this study, however, we finally select Q as about 20% of N based on

convergence analysis (Fig. 8.4). We compute the nodal stresses in two ways, with

the FE simulation and with the surrogate. Let Zv =
(
z(1)v , · · · , z(Q)v

)
∈ RM ′×Q be the

predictive mean of the PC scores obtained with the surrogate. We perform the inverse

PCA transformation to get the predicted and centered nodal stress Sv

Sv =W′>Zv . (8.29)

Note that the truncated PC basis W′ was defined previously, in Eq. (8.14), with

the training data. After adding the mean of each row of Sv to the corresponding row,

σv is finally predicted. We compare σv from the surrogate with the actual nodal

stress, σa, obtained from the FE simulation. In particular we quantify the l2-norm of

the error to assess whether or not the surrogate is accurate enough for our application.

8.3 Results

Before dealing with the uncertainty quantification analysis, we present the von

Mises stress contours resulting from running the finite element simulation with the

mean values of the GOH parameters (Table 8.1). The stress contours for this sim-

ulation are illustrated in Fig. 8.5. During the virtual surgery, the two scars are

sequentially closed by gradually imposing the suture constraints. The occipital Y-

shaped scar is sutured first as depicted in the first three panels of Fig. 8.5. The right

temporal C-shaped scar is closed next. The newly grown skin from the tissue expan-
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Fig. 8.3.: Surrogate model as a function of material properties by principal component
analysis (PCA) of the high-dimensional stress field (Step 1); and validation process
(Step 2)

sion process is especially useful in the temporal region, where a large portion of the

scalp stays within a low stress range. The distal end of the flap in the temporal region

does show a higher stress due to the discrepancy between the opposite edges of the

scar, which are fully brought together by the suturing constraints. The T-junction

of the occipital scar also shows elevated stress values. Notably, the patient showed

delayed healing in this region.
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Fig. 8.4.: l2-norm of the error between the finite element model and the surrogate
prediction with respect to the number of training samples used. The number of
training sample N is increased in intervals of 50, from 100 to 650.

Fig. 8.5.: von Mises stress computed with the finite element simulation of reconstruc-
tive surgery on the patient-specific geometry with the mean Gasser-Ogden-Holzapfel
model parameters in Table 8.1

In what follows, we will ignore any possible modeling error and thus assume that

the nodal stress value from the FE simulation is the true stress. The simulation

in Fig. 8.5, run with the mean of the GOH parameters, is a single observation.

To propagate the uncertainty in the material parameters to the stress values, we

first create a training parameter set using LHS, assuming that the parameters are

uniformly distributed within the range stated in Table 8.1. We generate N = 650
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training inputs X =
(
x(1), . . . , x(650)

)
∈ R3×650 that uniformly occupy the parameter

space. In this case, the training sample size was decided based on a convergence

analysis (Fig. 8.4). Briefly, we started with a sample size N = 100, generated several

sets of training data, and computed the l2-norm of the error of the surrogate over

the validation. The sample size was increased up to N = 650 with the interval of

50. The training set of N = 650 gave adequate results based on this convergence

analysis. Details on the quantification of the error and performance of the surrogate

for N = 650 are provided later in this section.

For each training parameter input, x(n), we run one finite element simulation and

obtain the non-zero nodal stress values as output. For the mesh used in this model,

M = 3, 886 was the dimension of the output vector, i.e. the number of nodes with non-

zero stress. These data are centered and arranged as S =
(
s(1), · · · , s(650)

)
∈ R3,886×650.

To reduce the dimensionality of the data we do the PCA of S. The plot in Fig. 8.6

shows the cumulative percentage of the total variance as a function of the number of

PCs. The first three PCs can account for over 99.7% of the total variation of the X,

and they are visualized on scalp. Keeping only the first three PCs, the truncated PC

scores are Z =
(
z(1), . . . , z(650)

)
∈ R3×650. As a result, the dimension of the output is

reduced from M = 3, 886 to M′ = 3. We store the PCs since they are used later on.

After normalizing the input X, the training data D ≡ {(x(n), z(n))}650n=1 are used to

build the surrogate through a GPR as explained in detail in the section 8.2.4. Before

validating the surrogate model, we conduct a few mathematical experiments to inves-

tigate the sensitivity of the predictive mean with respect to each of the components of

the test input x(∗). For instance, to test the influence of the first input parameter x1,

which corresponds to µ in the GOH model, we deactivate the other two parameters

and evaluate z(∗) through the GPR. As shown in the first row of Fig. 8.7, we vary x(∗)1
over the range [0.004774, 0.2014] and plot the scores z1, z2, and z3 in each column.

Likewise, the second and third rows in Fig. 8.7 show the curves of the predicted PC

scores as a function of x2 and x3, when the two other parameters are deactivated

(set to their mean). In addition to the predicted mean of the PC scores, the 95%
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Fig. 8.6.: Information from principal component analysis. Cumulative percentage of
variance explained is shown as a function of the number of principal components.
The first three principal components (a, b and c) are plotted on the scalp.

confidence interval is also shown as a shaded area around the solid lines. To compare

the prediction against the FE model, we ran additional simulations with the same

x(∗) used in each of the panels in Fig. 8.7. It can be seen that the FE results fall

within the confidence interval predicted by the surrogate.

For all three PC scores, the parameter x1, associated with the isotropic response

in the GOH model, is less influential than both x2 and x3 which capture the fiber

contribution to the strain energy. The dispersion of z1, z2, and z3 is consistent

regardless of the change of x1, supporting the limited influence of this input. In

contrast, the dispersion of z1, z2, and z3 increases with variation of x2 and x3. It

is also worth noting that the effect of x1 on the PC scores is fairly linear, which is

expected since this parameter has a linear contribution to the strain energy. On the

other hand, x3 produces a nonlinear response. Indeed, this parameter is inside the

exponential function of the GOH model.
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Fig. 8.7.: Response of the predicted principal component (PC) scores with respect to
the Gasser-Ogden-Holzapfel model parameters. The first row corresponds to the first
predicted PC score z1; the second and third rows correspond to z2, z3 respectively. In
each column, the predicted PC scores are plotted as a function of one of the inputs,
when the other two are fixed to their mean. The first column shows variation of
the predictive PC scores with respect to only x1, whereas the other two columns are
predictions with respect to x2 and x3, respectively. Finite element (FE) simulations
corresponding to each input vector are also visualized.

In addition to investigating the influence of a single parameter at a time, we also

use the surrogate to plot the contours of the PC scores over slices of the parameter

space obtained from fixing one parameter at a time. The first row of Fig 8.8, for
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Fig. 8.8.: Contours of the predicted principal component (PC) scores, z1, z2, and z3
over slices of the parameter space. The first row shows the first PC score, z1, while z2
and z3 are depicted in rows two and three respectively. The first column is the slice
of the parameter space obtained from fixing x1 to its mean. The second and third
columns are obtained from setting x2 and x3 to their respective mean.

example, shows the contours of the three PC scores as a function of x2 and x3 when

x1 is set to its mean. The second row of Fig 8.8 depicts contours when x2 is fixed,

and in the last row it is x3 that is fixed. Looking at the column corresponding to the

first predicted PC score, z1, it is clear that x2 and x3 have a similar influence, and

that both dominate against x1. However, x1 is important to understand the response

of the second and third PC scores.

To validate the surrogate, we generate 150 new validation inputs with LHS,

Xv =
(
x(1)v , . . . , x

(150)
v

)
∈ R3×150, and pass them through the surrogate to obtain the
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predicted PC scores, Zv ∈ R3×150. Independently, we use the same set of inputs to

run FE simulations and obtain σa ∈ R3,886×150. Then, Za ∈ R3×150, is obtained from

projecting σa onto the truncated PC basis. The predicted and actual PC scores are

plotted against each other in terms of their standardized residuals (Fig. 8.9, top row).

These residuals indicate the difference between the two quantities normalized by the

corresponding standard deviation reported by the GPR. Assuming that the residuals

follow a standard normal distribution, 99.7% of them should fall in [−3, 3], which is

indeed observed. To better understand the distribution of the residuals we show the

quantile-quantile plots (QQ-plots) in the bottom row of Fig. 8.9. In particular, the

QQ-plots help us compare our residuals against normal quantiles. For the first and

second PC scores, the quantiles of the standardized residuals do not follow a Gaus-

sian distribution but are actually concentrated around zero. This implies that the

predicted first and second PC scores are very similar to the actual PC scores from

the FE model (Fig. 8.9d and e). On the other hand, the QQ-plot of the third PC

score indicates that this residual follows more closely a Gaussian distribution but has

a larger error than the other two PC scores (Fig. 8.9f). These observations imply

that the surrogate prediction of the third PC score can be a source of error. However,

we do not expect this to be significant since the third PC explains only about 0.3%

of the total variation as shown in Fig. 8.6.

Another assessment of the surrogate is done based on the l2-norm of the error of

the nodal stress vector. Zv is passed through the inverse PCA transformation, W′>,

to obtain the predicted and centered nodal stresses Sv. After adding the means of

each row of Sv to the corresponding row, we obtain σv and we can directly compared

the surrogate to the nodal stress observed with the FE simulations (this is Step 2 in

Fig. 8.3). The histogram of the l2-norm of the error is shown in Fig. 8.10. The mean

of the l2-norm error is approximately 10%. The distribution is not normal, about

90% of the predicted stress vectors in the validation set have less than 20% error, and

there are only a few outliers. To visualize the difference between the surrogate and

the FE simulation for different values of the error, five different points are selected.
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Fig. 8.9.: Comparison of the first three principal component scores between surrogate
(zv1, zv2, and zv3) and finite element simulations (za1, za2, and za3). Top row shows
standardized residuals: zv1 (a); zv2 (b); zv3 (c). Bottom row shows quantile-quantile
plots of the standardized residuals: zv1 (d); zv2 (e); zv3 (f)

All five cases show good qualitative agreement, even for Fig. 8.10e which has an error

of 0.35.

The parameter intervals reported in Table 8.1 reflect a wide range of material

properties corresponding to different age, gender, anatomical locations, and different

individuals. Such broad input space is suitable to construct a surrogate when no other

information is considered. In reality, additional knowledge may become available. For

instance, noninvasive mechanical testing of the individual’s skin is now possible [27],

or the surgeon’s assessment and belief based on her/his experience, could help to

narrow down the uncertainty in the input. For example, we assume that the mean

parameter values of Table 8.1 are observed exactly. That is, we assume that x1, x2,

and x3 are known with 100% confidence (Fig. 8.11b). The output of the surrogate

we have considered up to this point, Zv, is only the predictive mean for a given input,
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Fig. 8.10.: Histogram of the l2-norm error, | |σa − σv | |2/| |σa | |2, between the nodal
stress vector computed with the surrogate and that observed with the finite element
(FE) simulation. The mean error is approximately 0.1, and 90% of the validation
set is below 0.2. A few validation tests are shown in a to e to show the qualitative
difference in the stress contours over the scalp for different values of the error: 0.047,
0.136, 0.205, 0.249, and 0.356.

but the GPR actually defines a normal distribution. The standard deviation of this

distribution is the expected error from the surrogate. The surrogate thus defines

normal distributions for z1, z2, and z3 (Fig. 8.11c). The mean and upper and lower

bounds of the 95% predictive interval are represented in Fig. 8.11a. In other words,

the stress contours in Fig. 8.11a are the mean and error bars represented over the

scalp when we ignore the uncertainty in the material properties.

On the other hand, considering uncertain inputs, additional variation of the stress

is expected. For instance, we assume that x1, x2, and x3 are normally distributed,
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Fig. 8.11.: Prediction of stress distributions with the GPR for three different input
distributions of the material properties x1, x2, and x3. When x1, x2, and x3 are known
with 100% confidence (b), the predicted PC scores follow a normal distribution (c).
The mean and upper and lower bounds of the 95% confidence interval of the von
Mises stress are visualized in (a). (Continued on the following page.)
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When the parameters are normally distributed (e), 103 PDFs of predicted PC scores
are generated by sampling the GPR for a vector of the normally distributed inputs,
leading to the mean and 95% error bars of the PDFs for z1, z2, and z3 (f), and to
the corresponding 95% confidence interval of the von Mises stress (d). A uniform
distribution of the material parameters (h) is passed through the surrogate to get the
corresponding mean and 95% error bars of PDFs of the PC scores (i) and confidence
interval of the von Mises stress (g).
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with standard deviation of 20% of their respective mean (Fig. 8.11e). Since surrogate

evaluations are inexpensive, we sample a thousand points from the normal distribu-

tions of x1, x2, and x3, and form a vector with these x(∗). We then sample the GPR a

thousand times on this input vector to generate probability density functions (PDFs)

for each z1, z2, and z3. These 103 PDFs for each PC score are used to calculate

the mean and 95% epistemic error bars of the PDF as shown in Fig. 8.11f. These

error bars are induced by the limited number of simulations used to construct the

surrogate [320]. The mean of the PDFs for z1, z2, and z3 are then used to compute

2.5, 50, and 97.5 percentiles of the von Mises stress distributions (Fig. 8.11d). The

last case we consider is a uniform distribution of the material properties in the range

defined by ±20% of their mean values (Fig. 8.11h). Once again, 103 PDFs for each

PC score are generated, and the mean and 95% epistemic error bar of the PDFs are

plotted (Fig. 8.11i). The corresponding 2.5, 50, and 97.5 percentiles of the von Mises

stress are also depicted in Fig. 8.11g.

It can be seen from these numerical experiments that the confidence interval of

the PDFs for z1, z2, and z3 (the shaded area in Fig. 8.11f and i) stays relatively

constant and narrow as the materials become more uncertain, but the PDFs become

wider as a result of the increasing uncertainty in the inputs.

We present one last investigation. Up to this point, the stress contours over

the entire scalp have been considered. However, reducing the high-dimensional stress

output via PCA necessarily introduces some error. The surrogate built with the entire

stress field can be used to broadly explore the effect of uncertain material parameters

and identify particular regions or scalar quantities of interest. For instance, based

on our previous analysis, here we see that there are two locations with potentially

high stress: the T-junction of the occipital Y-shaped scar, and the distal end of the

right temporal scar. From this observation we define the mean stress in these two

regions as new scalar quantities of interest. Clearly, since these are two scalars rather

than high-dimensional stress vectors, two surrogates can be directly constructed via

GPR without having to perform PCA. A similar experiment to that in Fig. 8.11 is
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done. Namely, we consider that the input is known with 100% confidence (as in Fig.

8.11b), or with two different distributions (see Fig. 8.11e and h). Fig. 8.12 shows

the corresponding distribution of the mean stress in the two regions of interest as the

uncertainty in the input increases. Comparing with Fig. 8.11, we notice that the

confidence intervals for the mean stress of the T-junction and the temporal scar are

much tighter compared to the confidence intervals of the PDFs for the PC scores.

This is expected since in Fig. 8.12 we have removed the error from the PCA step.

Fig. 8.12.: Uncertainty propagation of material input parameters for two scalar quan-
tities of interest. The quantities of interest are the mean stress for two locations on the
scalp: T-junction and distal end of temporal scar (left). Surrogates constructed via
Gaussian process regression are used for uncertainty propagation. The distribution
for the input parameters are the same as reported in Fig. 8.11b, e, and h.

8.4 Discussion

The stress distribution over skin flaps following a reconstructive procedure is a

determining factor on the subsequent healing response. Excessive stress has been

associated with poor outcomes such as hypertrophic scarring or delayed healing [2,3].
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Therefore, predicting the stress contours, particularly in the vicinity of sutured re-

gions, can help the surgeon to make a more informed decision to prevent some of

these complications. Finite element simulations allow computation of the stress con-

tours given the patient geometry, the desired procedure, and the material properties

of the skin. Obtaining the geometry and defining the procedure can easily be done

noninvasively [321–323]. On the other hand, the patient-specific material properties

are usually hard to obtain, and even though skin has a similar behavior across hu-

man patients, the exact parameters change with age, gender, anatomical location,

and from one person to another [45]. This manuscript develops tools to determine

the influence of uncertain material properties on the stress contours in a realistic FE

model of reconstructive surgery.

To obtain the patient-specific geometry we use MVS. This algorithm from com-

puter graphics reconstructs a 3D geometry from a sequence of uncalibrated 2D pho-

tos [282]. The advantages of this technique are its flexibility and affordability. MVS

is affordable because it only needs a standard digital camera. It is flexible because it

does not require a complicated setup, the photos are taken from any location and ori-

entation, the only constraint is to capture a sufficient number of photographs (around

30) from different angles. In this paper we took photographs pre, intra, and postop-

eratively, and thus we had 3D models for different time points of the surgery. This

allowed us to recreate the actual procedure that was performed on the patient. How-

ever, for the clinical application, capturing just the preoperative geometry is enough

in order to set up the FE model.

Even with a patient-specific geometry and a desired procedure, predicting the

stress contours from a surgery is challenging because of the uncertainty in the mate-

rial properties for an individual. Skin can be described as a nonlinear, transversely

isotropic, hyperelastic membrane. We use the GOH strain energy because it describes

collagenous tissues in general, and it has been used to accurately describe skin. Ex-

periments on human skin fitted to the GOH model have provided some valuable

data regarding a plausible range for the material parameters [60, 180]. However, our
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knowledge is still very limited in this regard, and more experiments on human skin

are needed to better characterize the statistics of the GOH parameters.

Given some prior of the material properties, the question that underpins this

manuscript is how to propagate this uncertainty through a realistic FE simulation of

a reconstructive procedure. The main challenge comes from the fact that detailed sim-

ulations are computationally demanding, and thousands of observations are needed to

compute the relevant statistics. We solve this problem using PCA followed by GPR.

Instead of running many simulations, we sample the parameter space and run only a

few of these costly training cases. PCA is needed because the output we collect from

the finite element model is a vector of nodal stresses. When dealing with realistic

scenarios, the geometry is usually represented with a fine, detailed mesh made up of

thousands of nodes [248,324]. In the clinical case shown here, for instance, the number

of nodes showing non-zero stresses is 3, 886. Moreover, we expect to observe distinct

features or modes in the stress response. PCA allows to reduce the dimensionality

of the stress data. In our example, we are able to go from 3, 886 to only 3 principal

components of the stress and still capture over 99% of the data variance. The last

step in our methodology is to do a GPR [307]. Among several non-parametric regres-

sion methods, GPR is desirable because of its Bayesian nature, which allows us to

distinguish between material uncertainty and the epistemic uncertainty induced by

the limited amount of data used to construct the surrogate [325].

The surrogate computed with this approach is computationally inexpensive while

still achieving a desired accuracy. With our clinical case we show that building a

surrogate with 650 training samples leads to errors that are around 10% on average,

and below 20% with 0.9 probability, based on a validation set of 150 cases. Having a

surrogate that can be evaluated almost instantaneously, interesting questions about

the response function of the stress in terms of the material properties can be explored.

For instance, we plot the predictive means of the PC scores as a function of each of

the inputs. We also show contours of the PC scores over slices of the input space

of material properties. Based on these results we were able to learn that the first
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parameter, associated with the isotropic term of the GOH model, has the less influence

on the PC scores and, consequently, on the stress output. This is due to the fact that

the first parameter contributes to the linear term in the GOH strain energy function

and that the nonlinear fiber contribution is dominant at larger tensile strains. In

this particular case, the closure of the two flaps leads to strains on the order of 20%

for x, y, and z directions and hence the fiber contribution is expected to be more

important. This type of information, for example, suggests that it is more valuable

to do experiments in order to get a better prior distribution for the parameters of the

GOH model associated with the fiber contribution.

The true potential of the surrogate is exploited by propagating the uncertainty in

the material parameters to the stress distribution over the patient-specific geometry.

We test three cases. When the parameters are observed with 100% confidence, the

95% confidence interval for the stress contours is determined by the error of the GPR

alone. Normal and uniform distributions of the parameters were also passed through

the surrogate to obtain the corresponding mean and error bars of the stress over the

scalp. Interestingly, these experiments suggest that reducing the uncertainty of the

parameters beyond a certain amount may not be too valuable. For example, in our

case, all three distributions of the parameters considered led to predictive intervals for

the stress that differed by only about 10%. This type of insight is possible because of

the ability to easily propagate a prior of the parameters with the help of a surrogate

based on GPR.

With our approach we were able to quantify the effect of uncertain material prop-

erties for a realistic clinical scenario. Nonetheless, our work is not free of limitations.

In particular, the only source of uncertainty considered here is that of the material

behavior, but incorporating uncertainty in the modeling, and especially in the ge-

ometry is a future research direction that can help delineate more general guidelines

for reconstructive procedures. Additionally, here we ignored material anisotropy, but

fiber orientation is another important factor that must be incorporated in the fu-

ture. In fact, we recently published a paper establishing the methodology to build
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the finite element model from the patient geometry acquired in the operating room,

and we used the Cox lines to approximate the fiber distribution [286]. However, we

ignored variations in the material parameters and limited our analysis to a single set

of values taken from the literature. Nonetheless, our model showed that stresses are

concentrated along the fiber vector field [99]. We have reported a similar stress distri-

bution in our previous work dealing with ideal flap simulations [287]. Therefore, we

expect that incorporating uncertainty in the anisotropy of skin will lead to principal

components reflecting the gradual increase and alignment of the stress contour with

respect to the fiber orientation field. Despite these limitations, this study is critical

to increase our understanding of the role of uncertain material properties, a hallmark

of biological materials, in the mechanical behavior of soft tissues for relevant clinical

settings.

8.5 Conclusion

In this manuscript, we study the effect of uncertain material properties in realis-

tic finite element simulations of clinically relevant procedures. In order to propagate

the material uncertainty through a computationally expensive, detailed finite element

model, we build a surrogate by coarsely sampling the parameter space, performing

principal component analysis on this set of training stress fields to reduce the di-

mensionality of the data, and doing Gaussian process regression. The surrogate is

inexpensive and accurate, enabling us to easily quantify important statistics of the

stress contours on the patient-specific geometry given a prior distribution for the

material properties.
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9. PREDICTING THE EFFECT OF AGING AND

DEFECT SIZE ON THE STRESS PROFILES OF SKIN

FROM ADVANCEMENT, ROTATION, AND

TRANSPOSITION FLAP SURGERIES

Abstract: Predicting mechanical stress contours on skin resulting from local tissue re-

arrangement surgeries is needed to design optimal treatment plans and avoid wound

healing complications. Finite element simulations of skin tissues have been shown

to be a reliable tool in preoperative planning, yet, a major obstacle in the creation

of predictive software comes from the inherent uncertainty in material properties of

biological materials, and the high computational cost of creating and calibrating vir-

tual surgery models. In this study we build computationally inexpensive surrogates

to easily predict stress profiles for arbitrary material parameters and a range of de-

fect sizes in three reconstructive scenarios: advancement, transposition, and rotation

flaps. The surrogates are built by first creating a training dataset of finite element

(FE) simulations that cover the input space of experimentally-determined skin prop-

erties from the literature. A reduced order representation of the training data set is

achieved via principal component analysis, and computationally efficient surrogates

are then created through Gaussian process (GP) regression. We show that the GP

surrogates predict stress contours with relative errors that are on average 2% in the

l2-norm compared to the high fidelity FE models. We apply the GP surrogates to

predict differences in the probability densities of stress contours between two different

age groups undergoing the same procedure. By replacing nonlinear FE models with

accurate yet inexpensive models that can be evaluated for any combination of human

skin material parameters and a range of defect sizes, we aim to enable calibration and

prediction of stress contours in individualized clinical cases in the near future.



213

9.1 Motivation

Surgical reconstruction of large skin lesions demands a delicate technique to

achieve the desired aesthetic outcome and preserve the functionality of the involved

tissues [30]. Deformation and mechanical loading of skin resulting from reconstruc-

tive surgery is a constant concern for the clinician because excessive stress leads to

poor cosmetic and suboptimal functional outcomes [4]. However, anticipating and

measuring stress contours on large skin areas remains an unresolved problem [8].

Surgeons currently rely on their training and experience to manually estimate the

skin tension in the operating room, but this approach is not quantitative and it is

done at a stage at which changes to the surgical plan are no longer possible. Con-

currently, the number of reconstructive procedures, especially in the head and neck

region, is sharply increasing. For instance, the primary form of treatment for skin

cancer, melanoma as well as non-melanoma, is surgical excision followed by recon-

struction with local cutaneous flaps [295,326,327]. In 2012, 3.3 million people in the

US were treated for non-melanoma skin cancer [293], and about 5% of new cancer

diagnoses are melanomas [328].

Local flaps are a common reconstructive strategy for the correction of cutaneous

lesions due to the advantage of using adjacent tissues with the same color, hair bearing

properties, and blood supply as contiguous skin. Local flaps can be classified by

vascular supply and geometric design [329]. The geometric design of a flap entails

deciding the contour for the incision and the suturing pattern, i.e., which pairs of

points along the edges of the flap are brought together by the sutures. In the absence

of engineering design tools, the space of flap designs has been explored through trial

and error. This empirical optimization process has led to many dissimilar strategies,

and even to this date new flap designs continue to be proposed [8]. Three strategies

-advancement, transposition, and rotation flaps- are currently the most common [329,

330] (see Fig. 9.1).
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To decide on a surgical plan, known critical factors implicated in wound healing are

considered. Reducing skin tension is one of the crucial preoperative assessments [1].

This is due to the fact that excessive tension at the suture lines is hypothesized to

yield flap complications [5]. Mechanical cues are acknowledged as a key trigger for

increased inflammation and fibrosis based on in vitro and animal models of wound

healing [35, 36]. Yet we are still unable to incorporate this knowledge reliably in the

clinical setting because measuring and predicting stress during preoperative planning

and treatment execution remains unsolved.

Fortunately, computational modeling of soft tissues has emerged as a powerful tool

to determine stress contours over sizable skin regions in realistic situations [14, 15].

Extensive mechanical characterization of skin samples with uniaxial, biaxial, bulge,

suction tests, and with custom robotic manipulators has resulted in a comprehensive

understanding of skin’s mechanical behavior [23,27–29,45]. In combination with novel

three-dimensional imaging techniques and progress in numerical analysis tools for thin

membranes [116, 122, 127], computer simulations of patient-specific and general flap

strategies have been explored [99]. These models have resulted in the quantification

and prediction of stress contours aligned with clinical findings, and have offered new

recommendations for treatment planning [14,17,99].

Even though the use of computational modeling tools such as finite element (FE)

simulations has permeated into the field of surgery biomechanics and wound heal-

ing device design, there are still important obstacles to overcome. The input to an

FE simulation consists of geometry, material parameters, and boundary conditions.

Skin, like all biological materials, shows a wide range of values in measured mechan-

ical properties [184]. Additionally, each patient’s treatment is unique. Accounting

for this uncertainty in the input of the FE model is a core barrier to the widespread

use of computational tools in preoperative planning [100]. With current technologies,

anticipating the stress contours of the skin for a given patient would entail evaluat-

ing a high fidelity FE model multiple times, each simulation being computationally

expensive and requiring specialized software.
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Surrogate and reduced-order modeling techniques have been recently proposed to

overcome some of the hindrances of FE simulations in design optimization applica-

tions or scenarios requiring real-time simulations [331,332]. The main idea is to use a

high fidelity, computationally expensive model offline in order to train an inexpensive

surrogate. Here we build computationally efficient Gaussian process (GP) surrogates

to easily predict stress profiles for arbitrary material parameters and a range of defect

sizes in the three most prevalent reconstructive scenarios: advancement, transposi-

tion, and rotation flaps [329, 333]. The GP surrogates are thoroughly validated over

the parameter space of experimentally-determined skin properties reported in the

literature [23,51,334].

Importantly, the creation of the GP surrogates is grounded on Bayes’ theorem,

such that the posterior GP is proportional to the maximum likelihood of the training

data and a prior GP [187]. In return, the GP surrogate contains not only information

about the predicted value of a function, but also of the associated confidence interval of

the prediction. This information of the uncertainty in the predicted stress is essential

during preoperative planning, model calibration and model refinement [335].

9.2 Methods

9.2.1 Constitutive model of skin

Connective soft tissues such as the skin show a characteristic nonlinear, J-shaped

strain-stress response dictated by their microstructure behavior. The middle layer of

the skin, the dermis, is the load bearing layer, it consists of a wavy collagen fiber

network embedded in a ground substance matrix [266]. Constitutive modeling of

connective tissues inspired by the microstructure response has led to hyperelastic

descriptions in which the strain energy is additively decomposed into contributions

from the matrix and from the collagen fiber network [314, 336, 337]. The matrix

is isotropic and nearly incompressible, while the fiber network is anisotropic and

incompressible. Here, we employ the Gasser-Ogden-Holzapfel (GOH) strain energy
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density function [57], originally developed to capture the behavior of arteries but that

has then been adapted to model skin [14,60]. Both matrix and collagen fiber phases

share the same deformation gradient F. Because the matrix is assumed to be nearly

incompressible, F is decomposed according to

F = FFvol , (9.1)

where F and Fvol are the isochoric and volumetric parts respectively. The volume

change is quantified from the determinant of the deformation gradient J = det(F),

which is needed to define the split in Eq. (9.1), namely: F = J−1/3F and Fvol =

J1/3I. I is the second-order identity tensor. The decomposition into isochoric and

volumetric terms enables the split of the strain energy density function into isochoric

and volumetric terms as well

ψ = ψ + ψvol . (9.2)

Since the GOH strain energy function considers the anisotropic contribution of

the collagen fiber network, ψ is further decomposed into isotropic and anisotropic

terms ψ = ψ
iso
+ψ

aniso
. In particular, ψ

iso
is defined as a neo-Hookean material, while

ψ
aniso

is modeled by an exponential energy potential that reflects the fiber aligning

and straightening with increasing deformation. The GOH strain energy can thus be

fully expanded into all contributions

ψ =
µ

2
(I1 − 3) + k1

2k2

(
exp(k2〈I f − 1〉2) − 1

)
+

K
2

(
J2 − 1

2
− ln(J)

)
(9.3)

where ψ
iso

, ψ
aniso

, and ψvol expressed consecutively. The first, isotropic contribu-

tion, is dictated by I1 = C : I, which is the first invariant of C = J−2/3C, with C
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the isochoric part of the right Cauchy-Green deformation tensor C = F>F. In the

anisotropic term, the pseudo-invariant I f is the deformation of the fiber network

I f = C : A where A = κI + (1 − 3κ)a f ⊗ a f . (9.4)

The second-order tensor A is a generalized structural tensor that combines the

second-order identity tensor I, and a standard structural tensor a f ⊗ a f defined by

the preferred fiber orientation a f . The weighting between the isotropic and fully

anisotropic terms is controlled by the parameter κ. If κ = 0 there is only energy from

deformation in the direction a f and the fiber contribution is perfectly anisotropic.

When κ = 1/3 the fibers are randomly distributed in all direction and the fiber

contribution becomes isotropic. It should also be noted that fibers are assumed to

buckle in compression, which calls for the use of the Macauley bracket, i.e., 〈I f − 1〉

which is zero when I f < 1 and I f − 1 otherwise.

Therefore, the strain energy function in Eq. (9.3) is succinctly parameterized by:

µ, the shear modulus of isotropic matrix; k1 and k2, collagen fiber parameters that

capture the tensile properties and nonlinearity of the fiber family; and K, the bulk

modulus which enforces the near-incompressibility of the matrix.

To close this section, we recall the definition of the Cauchy stress tensor

σσσ =
1

J
FSF> . (9.5)

9.2.2 Finite element models of local flap surgery

We deal with the three most important local flap designs: advancement, trans-

position, and rotation flaps. A schematic of the geometry defining each of these

procedures is shown in Fig. 9.1. Each incision design is embedded in a planar tissue

patch, and the skin defect that needs to be removed is simplified as a circle parame-

terized by the diameter φ. We assume that our virtual surgery simulations are done

in the scalp for which an average thickness of 3.5 mm is considered [338].
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Fig. 9.1.: Local flap designs: Advancement, transposition, and rotation flaps are
created to close a circular defect (upper row). The size of the defect is parameterized
by its diameter, φ. Letter pairs (a, a′), etc., indicate points to be brought together
by the sutures. Meshes for the finite element simulations are made of trilinear brick
elements assuming a thickness of 3.5 mm (bottom row).

To study the influence of the defect size on the resulting stress distributions,

we change the Dirichlet boundary conditions on the tissue surrounding the defect

rather than creating new meshes repetitively. In other words, the fixed boundary is

gradually moved inward to capture an increase in the defect size. Initially, a defect

of 22.22 mm is considered for a tissue patch of 270 × 270 mm. We then expand the

constrained region, leading to a smaller domain of 150 × 150 mm or, equivalently, to

an increase in the defect size to a diameter of 40 mm with respect to the original

tissue patch. Five increments of the fixed boundary are considered, corresponding to

defects φ = 22.22, 25, 30, 35.29, and 40 mm.
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To evaluate the equilibrium configuration of the virtual surgery procedures, we

use Abaqus Standard (Dassault Systems, Waltham, MA), an implicit nonlinear FE

commercial software package. As described in the previous section, skin is described

with the GOH model. Even though the form of the strain energy function is fixed,

the material parameters are considered uncertain, with the exception of the fiber

dispersion and the bulk modulus. We assume that κ = 1/3 and therefore the tissue

behaves as isotropic. While skin does show anisotropy, the fiber dispersion has been

reported to be relatively large [180], and therefore a random fiber dispersion is a

reasonable approximation to capture the essential features of the stress profiles for

the different surgeries. In addition, the bulk modulus K is not allowed to change freely

but it is instead determined to be the highest value that guarantees convergence for

all input parameters while allowing only small volume changes. Hence, µ, k1, and k2,

are the only uncertain material parameters considered in this study.

To execute the suturing in the virtual surgery simulation, we impose linear con-

straints between pairs of nodes. The distance between two nodes is gradually reduced

to close the flap, analogous to the clinical setting.

Eight-node linear brick elements (C3D8) with full integration are employed in the

analysis. We discretize the advancement flap with 4, 851 nodes and 2, 984 elements.

The transposition model consists of 10, 305 nodes and 6, 490 elements. The rotation

flap is modeled with 11, 871 nodes and 7, 442 elements.

9.2.3 Material behavior uncertainty of skin tissues and creation of the

training dataset

Characterization of skin mechanical properties over the past five decades has pro-

vided plausible parameters for different material models, including the GOH model

[60,180]. The range of the GOH model parameters considered here is as summarized

in Table 9.1. To account for possible sources of error in the acquisition of these pa-
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rameters, the parameter range is further extended to include ±20% with respect to

the range in Table 9.1.

Table 9.1.: Experimentally-obtained skin material parameters for the Gasser-Ogden-
Holzapfel model reported in the literature [60,180]

Parameter Range Mean
µ [kPa] [4.774, 201.4] 44.980
k1 [kPa] [0.380, 24530] 4909.2
k2 [-] [0.133, 161.862] 76.641

We remark that, based on the literature, the parameter range considered for µ

spans two orders of magnitude, the range of k1 spans six orders of magnitude, and

the range for k2 covers three orders of magnitude. The validity of such parameter

space is questionable. A possible explanation for the range of k1 and k2 reported is

that these two parameters have a limited contribution to the strain energy at small

deformations. The GOH strain energy function contains an exponential term that

reflects a sharp stiffening of the material as collagen fibers get aligned and stretched.

This exponential behavior is governed by k1 and k2. Thus, some of the experimental

protocols used to fit the GOH model may have failed to uniquely capture this expo-

nential response. Additionally, we note that any arbitrary combination of µ, k1, and

k2 may not represent a real mechanical response because of the interplay between the

different parameter contributions to the skin’s mechanical behavior. For example, a

large value of k1 and k2 may compensate for a small value in µ.

However, even considering these remarks, it is advantageous to use the largest

possible range of parameters reported in the literature to build the surrogate. After

the surrogate is trained on the wide parameter space, it can be used to propagate

narrower, realistic joint probability distributions of the parameters.

In all simulations, the bulk modulus is set to K = 4 MPa. This implies an

equivalent Poisson’s ratio [339] ranging from approximately 0.4701 to 0.4995 for the

training dataset. Values near 0.4995 will satisfy near incompressibility, whereas values

closer to 0.4701 will allow a slight amount of compressibility. Because K is an input
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to the FE model that influences the stress output and the trends isolated through

principal component analysis (PCA), we fix K even though the equivalent Poisson’s

ratio is not constant. A more careful determination of the skin’s compressibility, as

recently discussed in [340], is needed to properly incorporate variations in the bulk

modulus in our analysis.

Latin hypercube sampling (LHS) is used to generate uniformly distributed GOH

model parameters over the extended parameter range. Here, 900 sets of µ, k1, and k2

are created and used to run simulations for five different defect sizes φ. We run a total

of 4, 500 simulations for each flap design (Table 9.2). A validation set is also created

(Table 9.2). The corresponding output for each simulation is the von Mises stress

field. This stress feature is used for convenience since it reduces the stress tensor field

to a scalar field. However, we recognize that it may not be the most physiologically

relevant. Further investigation, beyond the scope of the present manuscript, is needed

to determine which features of the stress tensor are more strongly correlated to wound

complications. Nevertheless, the methodology to build the surrogate described here

can be easily extended to any other invariant of the stress tensor, or even to each

component of the stress tensor individually.

Table 9.2.: Dimensions of the training and validation input datasets. Random µ, k1,
and k2 are generated by Latin hypercube sampling (LHS), and for each input, five
defect sizes φ are run.

Training Validation
µ, k1, and k2 (by LHS) 900 300
φ 5 5
µ, k1, k2, and φ 4,500 1,500

9.2.4 Reduced representation of the training data via principal compo-

nent analysis

The quantity of interest, the von Mises stress field over the skin patch, is pro-

jected to the nodes of the FE mesh. Therefore, the output of each simulation has
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a dimension equivalent to the number of nodes. For realistic nonlinear FE models

used in biomedical applications, the number of nodes is on the order of thousands to

tens of thousands. In the simulations shown here, the meshes are composed of 4, 851,

10, 305 and 11, 871 nodes for the different flaps. Learning the response function over

this high dimensional space would entail an impractical computational cost. For a

scalar valued function, if there are M training data points, building the surrogate

entails O(M3) operations (see the next section on the surrogate creation). If training

the surrogate with a data set that has N independent output dimensions, the total

number of operations grows to O(N M3). To avoid the infeasible situation, we first do

PCA on the output data set. We identify only a few, n � N principal components

(PCs) that contain most of the variance of the data, and then project the output onto

this reduced space. The reduced order representation of the output brings down the

computational cost of training the surrogate to O(nM3) operations [312].

Let S = (s(1), · · · , s(M)) ⊂ RN be the N-dimensional output data set for the M

training inputs. Each row of S is centered by subtracting its own mean. The centered

output data, S, undergoes a singular value decomposition

S = UΣV> , (9.6)

where U is an N × N orthogonal matrix, Σ is an N × M rectangular diagonal matrix

with non-negative real numbers on the diagonal, and V is also an M × M orthogonal

matrix. The columns of U are the orthonormal eigenvectors of SS
>

, and the columns

of V are orthonormal eigenvectors of S
>

S. They are called left- and right-singular

vectors of S respectively. The diagonal entries of Σ are called the singular values of

S, they are the square roots of the eigenvalues of SS
>

and S
>

S, and are sorted in

descending order. Rearranging Eq. (9.6) as U−1S = ΣV> exposes the PCs of S to

be the rows of U−1. The rows of ΣV> are then called the PC scores. The singular

values indicate the variance of S. Thus, the first several singular values can be used

to capture most of the data variance, up to a desired threshold. For example, if the

first n singular values account for 99% of total variance, those n PCs can be used as
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a basis for the output and the remaining N − n scores can be ignored. In the case

of physical phenomena such as skin deformations and stress fields in reconstructive

surgery, only a few modes of components carry the majority of the information and

n � N. The truncated data set can be arranged as Y = U
′>

S ⊂ Rn where U
′

only

includes the first n PCs as columns.

9.2.5 Surrogate models of reconstructive surgery using Gaussian process

regression

Let D := (x(m), y(m))Mm=1 be the input and output data set. We seek to learn an

inexpensive approximation of the function y(m) = f (x(m)) to replace the FE model.

In this study, x(m) = (µ(m), k(m)1 , k(m)2 , φ(m)) ∈ X consists of three different material

parameters and the diameter of defect. The input data set is X = (x(1), · · · , x(M)) ⊂ R4.

The corresponding output, y(m) ∈ Y, contains the truncated PC scores as explained in

the last section. The output data set is Y = (y(1), · · · , y(M)) ⊂ Rn. Note that y(m) has

a dimension n, we use the notation y
(m)
r = fr(x(m)), r = 1, · · · , n, to refer to individual

PC scores for a single simulation. Also, let yr ∈ RM denote the vector with the rth

PC score for all M training inputs.

Each function fr(·) is fitted with a GP. A GP defines a probability measure over

the function space, that is, random variables are collected from the function space

such that any finite subset of the random variables has a joint Gaussian distribution

[187]. Thus, each fr(·) is independently modeled with a mean function, m(·; θ), and

covariance function, k(·, ·; θ),

fr(·)|θ ∼ GP (m(·; θ), k(·, ·; θ)) , r = 1, · · · , n (9.7)

where θ are called hyperparameters of the noise-free covariance function. Our prior

belief is encoded on our choice of the mean and covariance function. If there is no

prior knowledge on the mean of fr(·) (this is actually true in most applications), we

can choose m(·; θ) to be zero. In other words, the use of a zero mean function for
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the prior implies that the mean of the posterior is determined only by the covariance

function and the training data. Of course, if one has any prior knowledge on the

mean function, this should be used and the posterior will be adjusted accordingly.

For the covariance function k(·, ·; θ), also called kernel function, we use the squared

exponential,

k(x(i), x( j); θ) = s2exp

(
−1

2
(x(i) − x( j))>Λ−1(x(i) − x( j))

)
. (9.8)

The hyperparameters can now be explicitly defined as θ = (s, l1, l2, l3, l4). The

parameter s (> 0) is the signal strength; l1, l2, l3, and l4 are called characteristic

length scales corresponding to each input, they are all positive, and enter Eq. (9.8)

via Λ = diag(l21, l22, l23, l24).

Given input data set X, the prior GP on the corresponding response output is a

normal distribution

fr |X, θ ∼ N(0,K) with fr = ( fr(x(1)), · · · , fr(x(M))). (9.9)

where K is the covariance matrix built from the input points. The matrix K has (i,j)

components k(x(i), x( j); θ), and it is symmetric and positive semi-definite.

With the assumption that the simulation model potentially includes error (e.g.,

PCA-introduced error, discretization error, insufficient Newton-Raphson iterations,

etc.), we introduce Gaussian noise to each observation m

t(m)r = fr(x(m)) + ε(m)r . (9.10)

The entries of the vector tr = (t(1)r , · · · , t(M)r ) ∈ RM , are called the noisy target

values, and εr = (ε(1)r , · · · , ε(M)r ) ∈ RM is a Gaussian noise vector. Each component of

the Gaussian noise vector has zero mean and variance σ2
G,r , i.e., ε(m)r ∼ N(0, σ2

G,r). Be-

cause the Gaussian noise is independently and identically distributed, the conditional

distribution of tr given fr is represented as a multi-variate and isotropic Gaussian

distribution. Hence, the covariance matrix of the noisy targets tr becomes K + σ2
G,rI.
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The use of Gaussian noise does not only help to account for possible contamination of

the training data set, but it is also needed from a numerical point of view for stability

during factorization of the covariance matrix (see Eq. (9.13) below) [341].

Recalling that for a GP any finite subset of random variables has a joint Gaussian

distribution, the joint prior of tr with a new test output fr(x(∗)) is also a normal

distribution


tr

fr(x(∗))

 ∼ N ©«

0

0

 ,


K + σ2
G,rI k(X, x(∗); θ)

k(x(∗),X; θ) k(x(∗), x(∗); θ)

ª®¬ (9.11)

with k(x(∗),X; θ) =
(
k(x(∗), x(1); θ), · · · , k(x(∗), x(M); θ)

)
∈ RM . The joint prior Gaussian

distribution of tr and fr(x(∗)) is essentially a multiplication of the prior Gaussian

distribution of tr and the conditional Gaussian distribution of fr(x(∗)) given tr, which

yields the posterior distribution of fr(x(∗)) according to Bayes’ rule. Summarizing,

the posterior distribution of fr(x(∗)) is

fr(x(∗))|X, tr, x
(∗), θ ∼ N

(
µr(x(∗); θ, σ2

G,r), σ2
r (x(∗); θ, σ2

G,r)
)
. (9.12)

The predictive mean and variance at x(∗) are defined as

µ fr (x(∗); θ, σ2
G,r) = k(x(∗),X; θ)(K + σ2

G,rI)−1tr , (9.13)

and

σ2
fr (x
(∗); θ, σ2

G,r) = k(x(∗), x(∗); θ) − k(x(∗),X; θ)(K + σ2
G,rI)−1k(X, x(∗); θ) . (9.14)

The predictive mean and variance can be used as a point-wise surrogate with an

error bar at x(∗). In addition to providing a predictive variance for fr(x(∗)) (without

Gaussian noise), the predictive variance including the Gaussian noise variance is easily
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seen to be σ2
fr
(x(∗); θ, σ2

G,r)+σ2
G,r which should be interpreted as the predictive variance

for t(∗)r .

Up to this point we have explained the construction of the prior GP and how to

obtain the corresponding posterior for a new input, but we have yet to obtain the

values of the hyperparameters. The step of finding the hyperparameters is called GP

regression, or GPR. We implement the GPR using GPy [195]. The parameters θ of the

GP should be such that the likelihood of the output training data set is maximized.

For numerical stability, log likelihood is preferred. Since our output is made of n

independent PC scores, the marginal likelihood of each n output is independently

quantified as

L(θ, σ2
G,r ; X, tr) := logp(tr |X, θ, σ2

G,r), r = 1, · · · , n. (9.15)

Eq. (9.15) can be further expanded,

logp(tr |X, θ, σ2
G,r) = −

1

2
t>r (K + σ2

G,rI)−1tr −
1

2
log|K + σ2

G,rI| −
M
2

log2π . (9.16)

Then, the hyperparameters θ and Gaussian noise variance σ2
G,r are inferred by

solving the following optimization problem of

θ
∗, σ∗

2

G,r = arg max
θ,σ2

G,r

L(θ, σ2
G,r ; X, tr) . (9.17)

BFGS optimization is employed to search for the desired θ and σ2
G,r . The GPR

is independently executed n times, for each of the PC scores determined in the PCA

step.

We remark that even after finding the hyperparameters θ and σ2
G,r , the training

output consists of n PC scores for each simulation, and not directly the stress field.

Consequently, the µ fr (x(∗); θ, σ2
G,r) at a new input x(∗) is also the rth predictive PC
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score. To go back to the space of nodal stress values an inverse transform is first

required. Let y(∗)GP be the predictive PC scores at x(∗) such that

y(∗)GP =
(
µ f1(x(∗); θ, σ2

G,r), · · · , µ fn(x(∗); θ, σ2
G,r)

)
∈ Rn . (9.18)

Accordingly, the inverse PCA is defined as S
(∗)
= U

′
y(∗)GP. The S

(∗)
= (s(∗)1 , · · · , s

(∗)
N ) ∈

RN is the predictive N -dimensional centered nodal stress built from the predictive

mean of the GP surrogate. . Importantly, as just pointed out, this inverse transform

leads to a recovery of the full dimension of the prediction, from n to N. Note that

S
(∗)

contains the stress values centered by their mean. Adding the mean values to

each dimension can finally lead to the desired output from the surrogate: S(∗), the

predictive nodal stress values at x(∗).

To quantitatively assess the performance of the surrogate, the l2-norm of the

relative error of the predictive stress field is computed on a validation data set

(see Table 9.2). Namely, the validation data set, which consists of P points like

x(p) where p = 1, · · · , P, is used to generate stress fields through the FE simula-

tion S
(p)
FE . Independently, the same points are evaluated with the GP surrogate

to get the predictive stress S
(p)
GP. The relative error is calculated on these fields:

| |S(p)FE − S
(p)
GP | |2/| |S

(p)
FE | |2.

An additional evaluation of the surrogate is done by computing the standardized

residuals of the predictive PC scores. The stress fields from the FE simulation are

projected onto the reduced basis to obtain the corresponding PC scores y
(p)
FE . In con-

trast, y
(p)
GP are the predictive PC scores resulting from the GP, namely, the counterpart

of y
(p)
FE . Standardized residuals are defined as the difference between two PC scores

normalized by the standard deviation of the PC scores.
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9.3 Results

9.3.1 Training of Gaussian process surrogates for advancement, rotation,

and transposition flaps

We ran a total of M = 4, 500 FE simulations in order to generate enough data to

train the surrogate (see Table 9.2). Fig. 9.2 showcases snapshots of a single simulation

for each of the different flaps when the GOH parameters are set to the mean of the

range shown in Table 9.1. Even though the three flaps aim at correcting the same size

of lesion and correspond to the same material parameter input, the resulting stress

profiles are different from one another. The advancement flap leads to a uniform

stress along the flap and higher stresses at the distal end. In the transposition flap

the stresses are overall higher, with a band of high stress aligned with the intermediate

suture line. The rotation flap produces the lowest stresses near the region where the

lesion was initially located, but it also produces the greatest stress, concentrated at

the opposite end of the flap.

While the number of simulations for the training data set are the same across flap

strategies, and all the simulations correspond to the same domain size, the dimension

of the quantity of interest is the number of nodes. Therefore, the training output

for the advancement flap has dimension Nadv = 4, 521, the transposition flap has

Ntrs = 9, 633, and Nrot = 11, 163 for the rotation case. In either case, the dimension

is too high to attempt a direct interpolation of the response surface, and a reduced

representation is sought. We do PCA independently for each flap.

Remarkably, the first a few PCs can account for over 99% of the total variance for

each of the three scenarios (Fig. 9.3). In this study, we set 99.9% of the total variance

as the threshold. It must be noted that the reduction in the dimension of the training

data introduces an error in addition to the interpolation error. Hence, a higher

threshold for the variance quantified in the PCA step decreases this intrinsic error.

At the same time, as few PCs as possible are desired to maximize the compression of

the data. With a 99.9% threshold, the advancement, transposition, and rotation flaps
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Fig. 9.2.: Results of the finite element simulation for the advancement, transposition,
and rotation flaps. Sequential steps in the simulation are shown from left to right.
The simulations correspond to the mean values of the parameters in Table 9.1. The
contours show the von Mises stress field over the skin patches.

need only 6, 5, and 9 PCs respectively. In addition to compressing the data, the PCs

are eigenvectors of the stress for the different material parameters and defect sizes,

and they help to understand the dominant modes of deformation. Fig. 9.3 shows the

first three PC for each of the flaps. The first PC is undoubtedly associated with the

resulting stress contour, but the next two PCs show nonintuitive secondary features.

Recall the notation Dt := (x(m), y(m))4,500m=1 for the training data set. Each flap shares

the input x(m) but has different y(m) based on their own FE simulations and corre-

sponding PCA. Accordingly, the vectors y(m) have different dimension for different

flaps. Three surrogates are created. In each case, the GPR is performed indepen-

dently for each PC score. For the advancement flap, the resulting surrogate consists

of 6 independent GPs. In the transposition flap, training the surrogate entails doing
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Fig. 9.3.: Principal component analysis of the training data. Cumulative variance is
plotted with respect to principal component (PC). Advancement, transposition, and
rotation flaps need 6, 5, and 9 PCs to account for 99.9% of total variance. The first
three PCs are plotted on the finite element mesh.

the regression to fit 5 GPs. The rotation flap surrogate is made out of 9 independent

GPs.

9.3.2 Validation of the virtual surgery surrogates

We denote as Dv := (x(m), y(m))1,500m=1 the validation data set to verify the perfor-

mance of the three surrogates constructed via GPR. Note that the y(m) of Dv are

obtained by projecting the nodal stress output of the FE simulations Dv on the PCs

determined previously, with the training data Dt .
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Two analyses are done to validate the surrogates. One assessment is done over

the reduced dimensional space and a second error metric is obtained in the full di-

mensional space. The standardized residual is computed on the reduced dimensional

space and it is used to quantify the epistemic error caused by the limited number of

training data fed to the GPR (Fig. 9.4a). Most of the validation data points fall

within the [−3, 3] range, which is a meaningful bound since any point-wise prediction

by the GP surrogate is assumed to follow a normal distribution defined in Eq. (9.12).

Thus, the histograms of Fig. 9.4a reveal that most of the validation data points in-

deed fall within the 99.7% confidence range predicted by the GP surrogate. On the

other hand, a small number of data points are outside the [−3.5, 3.5] range, indicating

that these predictions are deviated away from the confidence range. This is caused

by the epistemic error of the posterior GP, and reflects regions of the parameter space

that may have remained unexplored.

Another validation procedure is implemented over the nodal stress space. The

predictive PC scores are passed through the inverse PCA. By constructing the full-

dimensional quantity of interest, the nodal stress vectors, out of the predictive PC

scores, a direct comparison to the nodal stress values from the FE simulations is

possible. Histograms of the l2-norm of the stress error are shown in Fig. 9.4b.

We remark that the l2-norm of the stress error includes two types of error, the one

caused by PCA and the epistemic error from the GPR. Since the number of PCs to

compress the data were chosen to capture 99.9% of the variance, 0.1% of the variance

is intrinsically missed.

The advancement surrogate has an average l2-norm relative error of 0.019, and

99.1% of the validation points have less than 0.1 error. The average l2-norm relative

error for the transposition flap is 0.021, with 99.5% of points with errors less than 0.1

error. In the case of the rotation flap, the distribution of the error is slightly wider,

still 98.1% of the validation set falls within 0.1 error, and the average relative error

in this case is 0.026. In all cases, the performance is quite satisfactory.
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Fig. 9.4.: Validation of surrogate models: The validation data set consisting of 1, 500
inputs per flap is analyzed over the reduced dimensional space (a) and the full di-
mensional space (b). The histograms of the standardized residuals for the predicted
principal components (PC) fall within the [−3, 3] range, which corresponds to the
99.7% confidence range predicted by the Gaussian process surrogate (a). For each
flap, the predictive means of the PC scores are inversely transformed to recover the
full nodal stress dimensions, enabling the direct comparison to the finite element (FE)
simulations in terms of the l2-norm of the relative error (b). Errors in the stress space
are less than 5% for almost all validation points, with maximum error values for ad-
vancement, transposition, and rotation flaps of 0.22, 0.12, and 0.21, respectively. The
points with maximum error show nonetheless a good agreement between surrogate
and FE von Mises stress fields (c).
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To better grasp the magnitude of error, the validation point with the maximum

error is plotted in Fig. 9.4c. Advancement, transposition, and rotation flaps have

maximum errors of 22, 12, and 21%, respectively. The result of the FE simulation

is plotted side-by-side with the predicted contour by the surrogate. The contours

are remarkably similar, even for these cases of maximum error. Indeed, the error is

large because of differences in a few nodes with high stress concentrations, which are

missed by the surrogate. Therefore, these overall stress profiles further confirm the

excellent qualitative prediction of the stress distribution by the surrogate, even for

outlier points.

9.3.3 Application of Gaussian process surrogates to anticipate the effect

of aging on the mechanics of tissue rearrangement

Once the surrogate model is validated, it can be used to rapidly and reliably predict

the stress field for an arbitrary triad of material parameters (µ,k1,k2) and a range of

defect sizes φ (see Table 9.1). Besides bypassing the need for an FE simulation at a

particular input, the inexpensive GP surrogate enables additional investigations, such

as uncertainty propagation and model calibration. In this study, the GP surrogates

are used to assess the impact of correcting the same skin lesion on two different age

groups: young [60, 334] and elderly individuals [60, 180]. For the younger group,

based on previous reports , it is assumed that the material parameters are normally

distributed with mean µy = 5.867 kPa, k1y = 73.188 kPa, and k2y = 73.217, and with

standard deviation such that the 95% confidence interval covers ±20% of the means.

For the elderly group, based on previous reports [60], the parameters are determined

to have means µe = 70.820 kPa, k1e = 8178.59 kPa, and k2e = 80.279, and, just as

in the younger group, standard deviations are assumed such that the 95% confidence

interval captures ±20% with respect to the mean.

Given the negligible computational cost of the GP surrogates, 1, 000 material pa-

rameters are randomly selected from the probability distribution of either the younger
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or the elderly group, and the corresponding posterior GP is used to calculate 95%

predictive intervals of the predictive PC scores. The surrogate is evaluated contin-

uously for different defect sizes from 20 to 40 mm (Fig. 9.5). Only the first and

second PC scores are displayed, the rest of the predicted PC scores are available in

the supplementary material. Two different shaded areas are depicted for each group.

First, we evaluate just the mean values, (µy, k1y, k2y) or (µe, k1e, k2e). The shaded

area in this case captures the epistemic uncertainty of the surrogates when there is

no uncertainty in the input, i.e., if the mean material parameters of the young and

elderly individuals are the real properties for these groups, then the uncertainty in the

prediction is solely based on the limited training data of the surrogates. The other

shaded area for each group shows the 95% predictive intervals including epistemic as

well as material parameter uncertainty.

Notably, the epistemic uncertainty is similar in the younger and elderly groups

for all flap designs. Only the first two PC scores are plotted in Fig. 9.5 but the

reader is referred to the supplement for the plots of the other PCs. The epistemic

uncertainty does increase for subsequent PCs, but just the first two PCs capture more

than 99% of the variance, hence we focus only on these two scores here. Even though

the PCs are not directly a stress value, they do carry information about the stress

field. Since the inverse transform from the PC scores to the nodal stress vectors is

linear, the values and uncertainty in the PC scores translate linearly to the values and

uncertainty in the stress fields. The fact that the epistemic uncertainty remains small

in all cases, even when the variation in the PC scores is large, provides confidence

that the surrogate was trained properly.

The range of variation in the PC scores for the two age groups as the defect

size increases is worth emphasizing. For all flaps and both PC scores shown, the

predictions for the elderly individuals always span wider ranges compared to the

younger group. For the advancement flap, the predictions for the younger group vary

over a very narrow range as the defect goes from 20 to 40 mm. This implies that in

general the soft skin of the younger group is not sensitive to the size of the defect
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Fig. 9.5.: Predictions of the first and second principal component scores for younger
(Y) and elderly (E) groups as a function of defect size φ: For each group, predictions
are done assuming that there is no uncertainty in the parameters or that the parame-
ters have a normal distribution. Each prediction is accompanied with 95% predictive
intervals shows as shaded areas.

being corrected for the advancement flap. This is not true for the other two flaps.

For the transposition flap, the response of the younger group for small defect sizes,

up to approximately 31 mm, appears linear, with a sharper increase in the prediction

as the skin lesion increases from 31 to 40 mm. In the elder group the two PC scores

increase in a modestly nonlinear fashion as the size of the defect increases. The most

interesting trend occurs for the rotation flap. In the younger group, the predicted

scores are linear and insensitive for defects between 20 and 30 mm. However, there is

an abrupt increase in the prediction for defects between 30 and 40 mm. In the elderly
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group there is a similar response, the predicted scores are not sensitive to φ at small

defect sizes, but the scores increase for defects larger than 30 mm.

The confidence intervals predicted as a result of the uncertainty in the material

parameters are much wider than the epistemic uncertainty intervals. Additionally, the

confidence intervals that include material behavior uncertainty change as the defect

size increases, in contrast to the epistemic uncertainty intervals which are constant

across all plots of Fig. 9.5. In the younger group, the uncertainty tends to increase

with larger defect sizes, although not in all cases. For elderly individuals, the effect

of material behavior uncertainty on the prediction of the PC sores is counterintuitive.

One would expect that increasing stiffness and defect size would always lead to an

increase in the uncertainty in the prediction of the PCs, but this is not always the

case. For the advancement flap, the younger group shows a constant confidence

interval, and the elder group has an increasing uncertainty for the first PC score and

decreasing uncertainty in the second PC score as φ increases. In the transposition

case, the younger group shows a clear increase in uncertainty as the defect size become

larger. The elderly group also shows larger confidence intervals with change in defect

size, although the trend is less noticeable. For the rotation flaps, the younger group

presents a widening of the confidence interval with larger φ. In contrast, the elderly

group shows a constant confidence interval for all φ for the first PC score, and a

decrease in uncertainty for the second score.

The observed trends in the reduced dimensional space defined by a few PC scores

provide insight into the sensitivity of the response function to the different parameter

variations, yet, the PC scores are not directly stress values. Thus, to recover the

original dimension of the output and to analyze the results in terms of stress fields

directly, we perform the inverse PCA. Fig. 9.6 depicts the 50th percentile of the

von Mises stress contours for younger and elderly groups at the smallest skin lesion

evaluated with the GP surrogate, φ = 20 mm, as well as the largest lesion of 40

mm. The stress distributions qualitatively match those illustrated in Fig. 9.4. The

advancement flap induces greater deformation and stress along the distal end, the
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Fig. 9.6.: The surrogate model for the von Mises stress predicts younger and elderly
groups. The von Mises stress contour to close biggest, φ = 40 mm, and smallest,
φ = 20 mm, defect is represented for advancement, transposition, and rotation flaps.

transposition flap induces a band of high stress oblique to the flap displacement, and

the rotation flap concentrates stress at the end opposite to the location of the lesion

being resurfaced.

As expected, there is a clear increase in stress with larger defects. This change is

particularly obvious for the younger group. For this group, in fact, the small lesion

size, φ = 20 mm, leads to negligible stress values in the three reconstructive strategies.



238

For the elderly individuals, the largest defect size induces larger stresses in all cases,

but the change is more noticeable in the advancement scenario.

Even though only the predictive mean is shown in Fig. 9.6, the surrogate outputs

the probability distribution of the stress corresponding to the distribution of the pa-

rameters. Having a probability for the stress we can, in turn, define metrics more

directly related to clinical judgement. For instance, we hypothesize, based on experi-

ments done in pigs [4], that von Mises stresses beyond 200 kPa have a higher rate of

complication. Therefore, Fig. 9.7 shows the probability of exceeding this threshold.

While clearly the elderly individuals have a higher coverage of these at-risk regions,

the younger population does show some of these regions as well. For the elderly group,

Fig. 9.7.: Probability to exceed a von Mises stress value of 200 kPa for the 30 mm
defect when the material parameters of the younger and elderly groups follow a normal
distribution centered around values of the parameters informed by the literature. The
probability contours for this event (exceeding a threshold value) are sharper compared
to the underlying stress fields.



239

there is a high probability of exceeding 200 kPa in all three scenarios. This trend

is clearest in the advancement flap, where the entire flap is at risk, and this region

extends to the surrounding skin at the distal end and at the base of the flap, whereas

the skin to the sides of the flap are not affected. For the transposition flap, the region

with high probability of exceeding 200 kPa is oblique to the design of the flap. In

case of rotation flap, the corner opposite to the defect is the most at-risk based on

the proposed metric.

Finally, we recognize that the entire stress field may not lead to the best predictor

of complications in the clinical setting. We hypothesize that the stress along the

suture line will provide valuable information to anticipate wound complications [3].

Thus, we also create GP surrogates for the normal component of the stress along the

suture line. Fig. 9.8 shows in red the curves of the suture line at the end of the

procedure for each of the flaps. The curve associated with the final suturing pattern

is parameterized with respect to normalized arc length.

Fig. 9.9 shows the prediction of the normal stress along the suture curve for

the younger and elderly groups for all the range of φ in the advancement case. The

predictive mean for the two age groups corresponds to evaluating the surrogate at the

mean value of the parameters, (µy, k1y, k2y) or (µe, k1e, k2e). The upper and lower

Fig. 9.8.: Suture curve at the end of the procedure for the advancement, transposition,
and rotation flaps: Three points on the suture curve indicate locations 0, 0.5, and 1
in terms of normalized arc length.
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bounds indicate the 95% predictive intervals resulting from the fact that the younger

and elderly groups are assumed to follow normal distributions as described before.

The points along the suture curve with high stress remain the same for different defect

sizes. Consequently, the plots of Fig. 9.9 show vertical bands of high stress. For the

younger group, the distal end, located at the beginning of the suture curve, shows

the highest stress. However, there are four more bands of stress, two near the distal

end, and two more narrow regions of high stress close to the base of the flap, near

the Burow’s triangle [342]. The normal stress along the suture curve is higher and

smoother for the elderly group compared to the younger group. At smaller defect

sizes, the distal end of the flap is not the most critical location in the elderly group.

However, as the defect size increases, the stresses along the suture in the distal end

become more important. The elderly group also shows two other bands of high stress,

one near the distal end, and one near the end of the suture curve, at the base of the

flap.

The contours in Fig. 9.10 show the normal stresses to the suture curve calculated

with the surrogate for the transposition flap. The defect size is continuously changed

in the range φ ∈ [20, 40] mm. The sharp corner near the end of the suture curve, at

the base of the flap, experiences the highest stress in both age groups. At low defect

sizes this region is narrow, and it expands as the defect size increases. In the younger

group, the effect of the defect size is less noticeable compared to the elderly group.

Additionally, the elderly group shows a secondary high stress feature in the range

[20, 40] of normalized arc-length as the defect size increases. This region corresponds

to the second segment in the suture curve (see Fig. 9.8).

Fig. 9.11 showcases the distribution of the stresses along the suture curve for the

rotation flap. Consistently with the observations from the stress contours in Fig. 9.6,

the stress along the suture curve is highest at the distal end, whereas the region from

which the defect was excised is closed with very low normal stresses. As opposed to

the transposition flap, in the case of the rotation flap the band of high stress stays
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Fig. 9.9.: Normal stress along the suture curve for the advancement flap: the predic-
tive mean is derived from the exact input value of younger and elder groups, while
the upper and lower bounds of the 95% predictive intervals are obtained considering
a normal distribution for younger and elderly groups. Prediction of the normal stress
is plotted with respect to normalized arc length for every defect size, φ ∈ [20, 40]
mm. The distal end of the flap, corresponding to normalized arc length in the range
[20, 40], shows the highest stress, which becomes a more prominent feature as the
defect size increases.

relatively narrow as the defect size increases. Other features along the suture curve

do become more evident, but the Y-shaped corner at the base of the flap is dominant.

9.4 Discussion

The goal of this study was to build inexpensive surrogate models to easily evaluate

stress contours for arbitrary material parameters and a range of defect sizes in the

three most common flap strategies used today: advancement, transposition, and rota-

tion flaps. Here we showed that replacing high fidelity models with efficient surrogates
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Fig. 9.10.: Normal stress along the suture curve for the transposition flap. The predic-
tive mean is derived from the exact input value of younger and elderly groups, while
the upper and lower bounds of the 95% predictive intervals follow from considering
uncertain parameters for the younger and elderly groups. The y-axis in the plots
depict the variation in the normal stress features as the defect size changes in the
range [20, 40] mm. A band of high stress appears in all plots, and corresponds to the
corner point in the suture curve, near the base of the flap. The elderly group shows a
widening of this high stress region with increasing defect size, as well as a secondary
stress feature for the arc length region [0.2, 0.4], corresponding to the second segment
in the suture curve.

is possible by first taking stress contours generated with detailed simulations across

the input space, and reducing the dimension of the data with PCA. This step allows

compression of the training data which is essential to the computational efficiency we

sought. The second step entailed the use of GPR to learn a probabilistic description

of the response surface. The key advantage of GPR is the ability to quantify the epis-

temic uncertainty of the surrogate, which is needed to assess our confidence in any

given prediction, and has implications in uncertainty propagation, surrogate model

training, inverse problem solution, and model calibration.
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Fig. 9.11.: Normal stress along the suture curve for the rotation flap considering
defects in the range φ ∈ [20, 40] mm. The predictive mean corresponds to evaluating
the surrogate at the mean value of the parameters for the younger and elderly groups.
Sampling normal distributions around these means leads to a confidence interval for
the normal stress along the suture curve. The lower and upper bounds of the 95%
confidence interval are shown. The stress normal to the suture curve is highest at the
distal end. The band of high stress is narrow and remains constant as the defect size
changes. A secondary stress feature for the arc length interval [0.5, 0.8] appears as φ
increases.

Current state of computational modeling of soft tissues has been beneficial for the

adoption of surgical simulators in resident training, where a realistic deformation is

needed but a predictive stress profile is not [90]. Unfortunately, this usually implies

the use of a simplified model of skin’s mechanical behavior. To change the landscape

of application of tissue mechanics simulations, and make predictive computations of

stress profiles an integral part of preoperative planning, there is a need to increase

computational efficiency while keeping fidelity. A niche already exists for finite el-

ement simulations in surgical planning because stress contours are known to be a
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determinant factor in wound complications but they cannot be easily anticipated or

measured in the operating room [3, 8]. Yet, while finite element models are suited

to address this gap, the current pipeline needs expert input and is time consum-

ing [99,248]. The work presented in this paper is able to replace a high fidelity model

with an inexpensive one that nonetheless preserves a high accuracy. This result ob-

viously comes at a cost, but the strategy is to spend a greater computational effort

offline in order to avoid the need of the detailed finite element simulation in the clini-

cal setting. This idea has been powerful in multi-objective design optimization [311],

and to learn the constitutive behavior of materials [343]. This idea has also appeared

in surgical simulators, with an emphasis on achieving real-time performance with

increasingly more fidelity in the response [331].

Our work hinges on data compression with PCA, and shows that over a wide range

of material properties spanning several orders of magnitude, the response of the finite

element simulation can be captured with just a few degrees of freedom. PCA distills

a large set of stress contours into a handful of eigenvectors or main stress modes.

Even if the mesh is fine, consisting of approximately 10, 000 nodes, less than 10 PCs

are needed to capture 99% of the variance in the data. This is possible because the

features of the stress contours are primarily driven by the geometry of the flap design,

and the variation in the material behavior has a greater influence on the magnitude

of these features but less so on the features themselves. This raises the question of

how patient-specific geometries can influence the variation in stress contours, which

is part of our ongoing work.

Interestingly, we confirm that the stress distributions are strongly dependent on

the flap design. The three flaps studied produce vastly different responses. The

sensitivity to the incision contour and the suturing strategy evidences a large design

space that remains unexplored. The reconstructive surgery community has converged

to a handful of designs guided by mechanical intuition and trial and error, without

engineering optimization tools to explore the entire design space. Our results confirm

some of the intuition reported by clinicians. In the case of the advancement flap,
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for example, stress is high at the distal end, which has motivated guidelines for the

maximum dimension of this kind of flap in order to avoid distal tip necrosis [287].

The transposition flap has been advocated as a design to direct the stress contours

with respect to the skin tension lines. While we do not consider anisotropy in this

study, we do see a stress band oblique to the overall displacement of the skin in

the transposition case, aligned with the intention of the surgeons. The rotation flap

creates a zone of high stress in the proximal end compared to the distal end. This

distribution of stress in the rotation flap has not been described before. As mentioned

previously, the stress contours do change with variation in the defect size and material

parameters, but the features or stress modes are dictated by the flap design. These

results suggest future research to elucidate the variation of the stress contours for

arbitrary incision lines and suturing patterns.

Ample mechanical testing of skin has led to increasingly more accurate constitutive

models, and more comprehensive documentation of skin’s mechanical behavior [29,

45,184]. At the same time there is no consensus yet as to which is the best choice of

constitutive model for a particular application [118]. Additionally, the uncertainty in

material behavior is an inherent feature of biological materials. These challenges have

been unmet in practice, and finite element simulations with a single set of material

properties are extremely common. To make computational tools a part of preoperative

planning, it is imperative to build predictive tools that propagate the uncertainty in

material properties and output confidence intervals for a given prediction [100]. In

the present work we inform the distribution of material properties with the values

available in the literature. The GOH model, common for collagenous tissues, has been

used to fit the response of skin. The data is still limited, particularly since material

parameters are known to vary with age, gender, and anatomical location [184]. The

parameter space for the GOH model reported in the literature is extremely large,

raising the question of whether or not this parameter space is reliable, and suggesting

future experimental work to better characterize the mechanics of human skin. In view

of our limited knowledge of the GOH parameter distributions to realistically describe
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human skin, we trained the surrogates over a wide parameter space and sampled this

space uniformly using LHS. This strategy leads to the creation of general surrogates

that then allow us to propagate any other, more realistic and narrower probability

distribution of the parameters.

Suction devices have become extremely popular in recent years because they en-

able in vivo testing of human skin, promising the acquisition of more comprehensive

data on the variation of human skin mechanical behavior [27,181,303]. The data from

these devices is, on the other hand, even less comprehensive compared to ex vivo ex-

periments such as biaxial testing [23,344]. We foresee that ex vivo data will continue

to refine our knowledge of material parameter distribution as a function of age, sex

and anatomical location, and that the low-fidelity suction tests done in vivo will allow

quick calibration of the prior distribution of parameters for a specific patient.

The notion of anisotropy is one that we do not address in this paper but that

has been emphasized by clinicians, who use skin tension lines to guide the flap design

[289,290,345,346]. Adding anisotropy as an additional source of uncertainty is a clear

future direction of our research.

Based on the current information available in the literature, we used the surrogate

models to explored the sensitivity of the flaps to the variation in material properties

associated with aging. The degree of uncertainty over the response surface increased

as the size of the defect to be corrected was increased. This is due to the nonlinear

nature of the constitutive model, which becomes more pronounced at larger defor-

mations. Surprisingly, transposition and rotation flaps for the younger group but

also, to a lesser extent, in the elderly group, were not sensitive to the input data

for small defect sizes. Therefore, exact measurements of skin properties are probably

not critical to close relatively small defects, up to 30 mm in diameter. However, for

larger defects the increase in stress becomes very sensitive to the material parameter

distribution.

Focusing on the response with aging, we find that the distribution representing

elderly individuals responded more sensitively to the uncertainty in the input data
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compared to the younger group. This is also a consequence of the nonlinear behavior

of the constitutive model which is more pronounced in stiffer tissue compared to softer

tissue at a given deformation. The immediate implication of these findings is that

the accurate measurement of skin properties becomes more important with aging.

We showed that the surrogates can be used to estimate zones of concern by calcu-

lating the probability of the stress passing a certain threshold. Here we assumed the

threshold to be 200 kPa based on previous reports on an animal model [4]. Unfortu-

nately, the best metric for anticipating wound complications in humans in response

to excessive tension is not known yet. There is no doubt that excessive stress leads

to complications [5, 292, 347], but this effect is achieved in combination with other

factors such as inflammation and changes in blood supply. We hypothesized that

normal stresses along the suture curve could be a good indicator of complications.

This metric does capture some regions that have been reported to show complica-

tions in humans, such as the distal end of advancement flaps [287, 304]. However, it

also showed locations of high normal stress at sharp corners of the suturing contour,

which are not necessarily associated with complications [342]. Combining the current

surrogate models with in vivo mechanical testing of skin with a suction device, we

expect to enable model calibration for patient specific cases in order to investigate

which quantities of interest derived from the stress fields are the best predictors for

wound complications.

9.5 Conclusion

In conclusion, principal component analysis and Gaussian process regression have

enabled us to replace high fidelity nonlinear finite element models of common flap

strategies, with computationally efficient surrogates. We have demonstrated that the

Gaussian process surrogates can be used to investigate the effect of material behavior

uncertainty associated with aging, as well as the variation in the size of the skin lesion

that needs to be corrected. The present methodology can also be extended to capture
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a wider range of flap designs, skin patch geometries, and anisotropy. Paired with in

vivo testing of skin, which is becoming increasingly feasible, we expect that our work

will enable us to determine quantitatively how exactly excessive stresses correlate to

wound complications, and to use this information for preoperative recommendations

in the near future.
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10. IMPROVING RECONSTRUCTIVE SURGERY

DESIGN USING GAUSSIAN PROCESS SURROGATES

TO CAPTURE MATERIAL BEHAVIOR UNCERTAINTY

Abstract: To produce functional, aesthetically natural results, reconstructive surg-

eries must be planned to minimize stress because excessive loads near wounds have

been shown to produce pathological scarring and other complications. Presently,

stress cannot easily be measured in the operating room. Consequently, surgeons rely

on intuition and experience. Predictive computational tools are ideal candidates for

surgery planning. Finite element (FE) simulations have shown promise in predicting

stress fields on large skin patches and complex cases, helping to identify potential

regions of complication. Unfortunately, these simulations are computationally expen-

sive and deterministic. However, running a few, well selected FE simulations allows

us to create Gaussian process (GP) surrogate models of local cutaneous flaps that are

computationally efficient and able to predict stress and strain for arbitrary material

parameters. Here, we create GP surrogates for the advancement, rotation, and trans-

position flaps. We then use the predictive capability of these surrogates to perform

a global sensitivity analysis, ultimately showing that fiber direction has the most

significant impact on strain field variations. We then perform an optimization to de-

termine the optimal fiber direction for each flap for three different objectives driven

by clinical guidelines. While material properties are not controlled by the surgeon

and are actually a source of uncertainty, the surgeon can in fact control the orienta-

tion of the flap with respect to the skin’s relaxed tension lines, which are associated

with the underlying fiber orientation. Therefore, fiber direction is the only material

parameter that can be optimized clinically. The optimization task relies on the effi-

ciency of the GP surrogates to calculate the expected cost of different strategies when

the uncertainty of other material parameters is included. We propose optimal flap
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orientations for the three cost functions and that can help in reducing stress result-

ing from the surgery and ultimately reduce complications associated with excessive

mechanical loading near wounds.

10.1 Motivation

Reconstructive surgery requires balancing long term tissue functionality while pro-

ducing aesthetically natural results [7,291,330]. Complications such as wound dehis-

cence, pathological scarring, and skin necrosis are partially caused by excess stress,

clinically referred to as tension, especially along suture lines [3,35,267–269]. However,

measuring stress in the operating room is not practically possible to date with the

exception of research studies [8, 348]. Thus, surgeons rely on intuition built from ex-

perience and training to estimate skin tension and plan the surgery [326,330,349,350].

This approach is not quantitative, making it difficult to train residents on objective

metrics. In addition, the skin tension is estimated at a point in the process where

changes to the surgical plan are no longer feasible - for example, once surgical exci-

sion of a skin lesion has already occurred. In view of these limitations, high fidelity

computational models of tissue mechanics can be used to recreate virtual surgery

scenarios and estimate the stress distribution from a given surgical plan [14, 100].

However, a longstanding limitation of computational models is the difficulty to in-

corporate inherent variability and uncertainty of skin mechanical behavior between

individuals [101, 184]. Another challenge is that high fidelity models are too compu-

tationally expensive for routine clinical use [17, 19]. Here, we seek to overcome these

problems in the context of local cutaneous flaps by creating Gaussian Process (GP)

surrogate models from detailed finite element (FE) models. The surrogate models

are computationally inexpensive, yet they are accurate over a wide range of material

parameters, including anisotropy. We show that these GP surrogates, being compu-

tationally affordable, can be leveraged to easily solve flap optimization tasks requiring

a large number of function evaluations.
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Local flaps are commonly used to repair cutaneous lesions such as skin cancer or

burn lesions [295, 326, 351]. Local flaps have several aesthetic advantages over other

reconstructive techniques, including having the same color, hair bearing properties,

and blood supply as the skin surrounding the lesion. Local flap designs can be clas-

sified based on their geometry, i.e., the pattern of the incision and the pairs of points

along the edges of the flap that are brought together by sutures [329, 352]. While

new flap designs are still being proposed [8, 353], the most common are currently

the advancement, rotation, and transposition flaps [329, 330] (see Fig. 10.1). Here,

we start from these three flap designs and create detailed FE models to predict the

resulting strain contours over the flap and surrounding skin. Strain is selected as the

quantity of interest in this study because, unlike stress, strains can be measured non-

invasively even in the operating room with the use of 3D photography or multi-view

stereo (MVS) [99,115]. Moreover, strain measurements have been linked to compres-

sion of the flap in the thickness direction and collapse of the microvasculature leading

to ischemia and subsequent complications [354].

Previous examples of FE simulations of reconstructive surgery have improved our

understanding of basic features of stress and strain profiles for common flaps. Ad-

ditionally, they have already gained recognition as a promising tool for prediction of

potential healing complications in personalized cases [14, 18, 99]. However, as men-

tioned above, FE models are computationally expensive and deterministic in nature,

while flap parameters and skin material properties in clinical settings entail unavoid-

able uncertainties that cannot be captured with a single FE evaluation [23, 51, 185].

Instead, many FE simulations would be required to propagate uncertainties through

the model, which is not feasible in routine clinical settings. Optimization of flap design

using FE simulations is also challenging on a budget [17]. Thus, FE simulations are

not ready for clinical use. Unfortunately, this means that current recommendations

are described in qualitative terms such as feel or manual estimation of tension [349].

Machine learning tools can be leveraged to reduce the computational burden of de-

tailed computational simulations by learning inexpensive metamodels of the original
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high fidelity models [156, 355]. For example, stress and strain features as a function

of different inputs can be learned using machine learning tools such as GPs [101,160].

This and other machine learning approaches have been used in other fields of compu-

tational physics applied to medical problems, for example to replace computational

fluid dynamics models with deep neural networks [168], or to capture cardiac elec-

trophysiology [157,159]. A recent perspective on the integration of machine learning

methods and physics-based models covers more examples, and also highlights the

current challenges and opportunities in this field [356].

Here, we first obtain a reduced order representation of the strain fields through

principal component analysis (PCA). Then, the data consisting of the reduced output

with its corresponding input (material parameters including anisotropy), is used to

train a computationally efficient GP surrogate. The GP surrogates are trained on a

few well-selected FE simulations, but predict stress and strain accurately for arbitrary

material properties within a broad range.

The work shown in this paper extends the previous work in this area through

considering anisotropy, which is a key feature of soft tissues, including skin [57, 180].

More importantly, in the clinical scenario, most of the material parameters describing

skin’s mechanical behavior are highly uncertain except for the anisotropy direction.

Starting from the seminal work of Langer in the nineteenth century, the anatomy of

skin anisotropy has been well documented [42, 357, 358]. The relaxed skin tension

lines, which are associated with the underlying fiber direction, are the most common

anisotropy feature used surgical planning [345]. Our sensitivity analysis reveals that

the anisotropy direction is the most important material parameter affecting the final

strain distribution. Since the surgeon can actually control the orientation of the flap

with respect to the relaxed skin tension lines, which we consider indicative of fiber

direction, we optimize the flap orientation posing objective functions that reflect

clinical guidelines [32, 349,359].
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10.2 Methods

10.2.1 Automating generation of finite element models

We create a base model of the incision geometry for each of the three flaps using

Abaqus Standard (Simulia, Boston, USA). Unlike previous work [101], we restrict

our attention to a circular, two dimensional domain. The plane stress formulation is

accurate for modeling skin because it is a thin membrane [344, 360], although more

detailed models accounting for the multiple skin layers are also possible [361, 362].

In the cutaneous flaps shown here, the loading is expected to be within the skin

plane and primarily under tension. Therefore, the dermis is expected to be the major

contributor to the mechanical response of the tissue [37,178], and the contributions of

the other two skin layers, epidermis and hypodermis, are ignored. In previous work,

setting up the incision geometry, boundary conditions and material parameters was

done manually. This is a time consuming, inefficient process. Our long term goal is

to bypass manual model creation. As a first step in this direction, we automate input

file generation with a Python script which takes inputs of a few key points and the

original Abaqus input file. The script automatically identifies the flap edges, generates

the suturing scheme, and imposes boundary conditions taking into account the flap

edges. Automating further the geometry of the incision pattern is a logical next step,

but not explored in this paper. We focus on the material behavior uncertainty and

consider a single suturing scheme and a single set of fixed boundary conditions. A

wider set of simulations varying the flap design more broadly is ongoing work. For

the simulations in this paper only the outer edge is fixed. The suturing scheme is

illustrated in Fig. 10.1. Sutures are imposed as linear constraints between pairs

of nodes, which are gradually imposed to bring the corresponding edges together,

analogous to the actual procedure [14]. The script for input file generation is available

with this submission. To aid in convergence, we allowed some of the simulations to

add dissipation for stabilization of the solver. While this introduces an error in the

prediction, we enforced this error to be very small since only a small number of
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simulations required this artificial dissipation and we kept the artificial energy as low

as possible.

a

b

c

Fig. 10.1.: The three most common flap designs are advancement, rotation and trans-
position flaps. Finite element models of the flaps are generated semi-automatically.
Base flap design generated manually in Abaqus (a). Automatic identification of the
edges (b). Matching colored edges in each design are brought together by sutures
to close the skin. Adjacent skin regions to the edges are also identified and used to
impose essential boundary conditions. In this case, only the outer perimeter is fixed.
Suturing pattern imposed as linear constraints between pairs of nodes are applied
gradually to bring the flap together (c). In this case, the sutures are mapped across
the paired edges such that they have a uniform spacing.
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10.2.2 Constitutive model of skin

The mechanical response of the dermis dictates the overall behavior of skin un-

der tension [118, 363]. The dermis is a collagenous tissue and can be considered

nearly incompressible and hyperelastic [178]. Though it was originally developed

to capture the mechanical behavior of arteries, the strain energy function proposed

by Gasser-Ogden-Holzapfel (GOH) [57] has been adapted to model skin and is used

here [23, 180]. The main features of this strain energy are its exponential behavior,

and its microstructurally-inspired decomposition which naturally incorporates the in-

fluence of anisotropy due to collagen fiber networks. We briefly define the important

kinematic quantities before introducing the strain energy. The deformation gradient

F is the main kinematic object, capturing the local changes in geometry induced by

the deformation map. Due to its nearly incompressible behavior, it is advantageous

to split the deformation gradient into its isochoric and volumetric contributions

F̄ = J−1/3F, Fvol = J1/3I , (10.1)

where J = det(F) is the volume change, and I is the second-order identity matrix.

Consequently, the isochoric part of the right Cauchy-Green deformation tensor is

defined as

C̄ = F̄>F̄ , (10.2)

with the first invariants Ī1 = C̄ : I.

Additionally, we introduce the vector a0 in the reference configuration which spec-

ifies the direction of anisotropy. This vector field gets mapped to the vector a = Fa0

upon deformation. Since we deal with a two-dimensional domain, the fiber direction

can be parameterized by the single angle θ. The direction of anisotropy defines the

fourth pseudo-invariant of C̄

Ī4 = a>0 C̄a0 . (10.3)
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The collagen fibers are not necessarily perfectly aligned. In fact there is some

dispersion around the preferred orientation a0. This dispersion can be understood as

the result of fitting a uni-modal distribution to the fiber orientation distribution over

a unit sphere [57]. We use the parameter κ to denote the dispersion, and we remark

that this parameter is associated with the width of the orientation distribution. A

value of κ = 0 would mean all fibers being perfectly aligned, while κ = 1/3 indicates

uniform fiber distribution. Thus, rather than the value of the fourth pseudo-invariant

alone, the fiber contribution consists of a linear combination of an isotropic term and

an anisotropic term

Ē = κ(Ī1 − 3) + (1 − 3κ)(Ī4 − 1) . (10.4)

The strain energy can now be defined as a sum of a volumetric part and two

isochoric parts, one that describes the isotropic ground matrix, plus the anisotropic

term

Ψ = Ψvol + Ψ̄iso + Ψ̄aniso , (10.5)

with the volumetric term being

Ψ
vol =

K
2

(
J2 − 1

2
− ln J

)
, (10.6)

controlled by the single parameter K which is the bulk modulus. In this work, incom-

pressibility is imposed fully and the parameter K does not have any influence. The

first contribution to the isochoric term is purely isotropic

Ψ̄
iso =

µ

2
(Ī1 − 3) , (10.7)
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and parameterized by the shear modulus µ. The last term is due to the fiber family

and takes the form

Ψ̄
aniso =

k1
2k2

(
exp(k2〈Ē〉2) − 1

)
(10.8)

where 〈·〉 denotes the Macaulay brackets, and the parameters k1 and k2 have been

introduced.

Thus, the material model is fully described by the inputs [µ, k1, k2, κ, θ]. Based

on our previous work and a review of the literature, plausible parameter ranges are

illustrated in Table 10.1 [23, 101].

Table 10.1.: Ranges for the parameters used to describe the mechanical behavior of
skin including anisotropy

Parameter Range
µ [kPa] [4.774, 6.804]
k1 [kPa] [3.800, 209.300]
k2 [-] [52.530, 161.860]
κ [-] [0.133, 0.333]
θ [◦] [0, 180]

10.2.3 Creating Gaussian process surrogates

To create the surrogate model, the GOH parameter space summarized in Ta-

ble 10.1 is sampled N times using Latin hypercube sampling (LHS). LHS ensures

that each parameter is sampled uniformly. Individual inputs are denoted as x(n) =

(µ(n), k(n)1 , k(n)2 , κ(n), θ(n)) with a total training set

X = (x(1), · · · , x(N)) ∈ R5×N . (10.9)
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Each x(n) defines an FE simulation that creates a nodal strain output E(n) ∈ RM

where M represents the total number of free nodes in the mesh. This gives an overall

strain matrix of

E = (E(1), · · · ,E(n)) ∈ RM×N . (10.10)

For each row in the overall strain matrix E, the outputs are centered by subtracting

the row’s mean and dividing by its standard deviation. This gives a centered and

scaled output of

Ē = (Ē(1), · · · , Ē(N)) ∈ RM×N . (10.11)

Since the meshes have a large number of nodes, the strain outputs E(n) have a

very high dimension M. Here, we reduce the dimensionality of this output data using

principal component analysis (PCA) [187]. To perform a PCA, we define W ∈ RM×M

as the linear transformation

WĒ = Y (10.12)

where Y ∈ RM×N is the principal component (PC) score matrix. In order to find this

matrix W, the singular value decomposition (SVD) of Ē is introduced first,

Ē = UΣV> , (10.13)

which consists of orthogonal matrices U ∈ RM×M and V ∈ RN×N , and a rectangular

diagonal matrix with non-negative real numbers Σ ∈ RM×N . Multiplying Eq. (10.13)

from the left by U−1, and noting that because U is an orthogonal matrix U−1 = U>,

we obtain

U>Ē = ΣV> . (10.14)

Using Eq. (10.14), we define the PC projection in terms of the SVD such that

W = U> and Y = ΣV>. The rows of W = U> are the PCs, the rows of Y are

the PC scores, or the projection of the original data (Ē) to the PC basis. Since we
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centered the data prior to performing the SVD, the variance of the data is the square

of the singular values scaled by 1/(N − 1). Essentially, the singular values show how

the information in each column of Ē is distributed when we project it to the PC

basis. Thus, we can truncate our PC values by defining a criterion, such as capturing

99% of the total variance in the data. This truncation leads to a reduced basis basis

W′ ∈ RM ′×N with PC scores Z = Y′ ∈ RM ′×N . Ideally, the majority of the variance

can be captured within a small number of PCs, meaning M � M′, significantly

reducing the dimensionality of our initial nodal strain data. Indeed, as will be shown

later, about thirty PCs capture most of the variance in our strain profiles. The GP

regression is performed on the truncated PC score data

Z = (z(1), · · · , z(N)) ∈ RM ′×N . (10.15)

The training dataset consists of the corresponding inputs paired with the trun-

cated PC scores

D ≡ {(x(n), z(n))}Nn=1 . (10.16)

Given the training data, we are interested in performing GP regression to learn a

scalar function for each PC score. For any set of observations of the mth PC score

(zm ∈ RN), we are interested in the function fm(·), but we consider that rather than

observing the correct value of the function, we observe a noisy output

z(n)m = fm(x(n)) + ε(n)m (10.17)

with εm having independently and identically distributed Gaussian noise with zero

mean and variance σ2
ns,m. To learn the function fm(·) from the data, we first model

the prior state of knowledge about fm using a GP

fm(·) ∼ GP(µm(·), km(·)) (10.18)
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with mean and covariance functions µm(·) and km(·), respectively. We choose a zero

mean function such that the GP prior is a multivariate normal distribution over the

inputs X,

fm(X) ∼ N(0,Km) (10.19)

The covariance matrix Km ∈ RN×N contains our assumption about the regularity of

the function we wish to capture. Here we use a radial basis function as a kernel, and

the components of the covariance matrix follow

Km(i, j) = km(x(i), x( j); ζm)

= s2f ,m exp

(
−1

2
(x(i) − x( j))>Λ−1m (x(i) − x( j))

) (10.20)

with Λm = diag(λm,1, λm,2, λm,3, λm,4, λm,5), and each λm,i capturing the squared charac-

teristic length-scale of each input. The process variance is denoted s2f ,m in Eq. (10.8).

These hyperparameters, denoted ζm in Eq. (10.20), are estimated by maximizing the

likelihood of the observed outputs zm,

log p(zm |X, ζm) B −
1

2
z>mΣ

−1
m zm −

1

2
log |Σm | −

N
2

log 2π . (10.21)

Note that due to the assumption of the noisy observations we have a covariance

Σm = Km + σ
2
ns,mI, which is the sum of the GP covariance matrix plus the Gaussian

noise. Having determined the hyperparameters ζm from maximizing Eq. (10.21), the

posterior of fm(·) is derived using Bayes’ rule. Moreover, the posterior for any new

parameter input x(∗) is also Gaussian,

fm(x(∗))|D, x(∗), ζm ∼ N
(
µm(x(∗); ζm), σ2

m(x(∗); ζm)
)

(10.22)

with predictive mean and variance,

µm(x(∗); ζm) = k>mΣ−1m zm , (10.23)
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and

σ2
m(x(∗); ζm) = k(x(∗), x(∗); ζm) + σ2

ns,m − k>mΣ−1m km , (10.24)

respectively. In Eqs. (10.23) and (10.24), the vector km is

km =
(
k(x(∗), x(1); ζm), · · · , k(x(∗), x(N); ζm)

)
. (10.25)

In summary, Eq. (10.22) predicts the expected PC scores as the predictive mean

(Eq. (10.23)), with error bars given by the predictive variance (Eq. (10.24)).

To validate the GP model, we sample independently another set of Q inputs using

LHS like

Xv = (x(1)v , · · · , x(Q)v ) ∈ R5×Q . (10.26)

FE analyses are run for each of these Q input parameter sets for each flap to obtain

truth data (the nodal strain outputs) to be compared against the GP predictions.

Note that the GP predictions lie on the PC space. To obtain nodal strain outputs

from the surrogates, we first use the posterior GP to obtain the predictive means of

the PC scores,

Zv = (z(1)v , · · · , z(Q)v ) ∈ RM ′×Q , (10.27)

and then perform an inverse PCA transformation to obtain a centered prediction of

the nodal strain as

Ēv =W′>Zv . (10.28)

Lastly, reversing the centering operation that was done before PCA in the training

data, we obtain nodal strain predictions that can be compared directly to the FE

truth.
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10.2.4 Sensitivity analysis

To understand the influence of each parameter, we perform a Sobol sensitivity

analysis [197]. The method followed in this manuscript follows closely our previous

work and is also aligned with the documentation of Python’s SALib library [198]. The

goal of this analysis is to determine which of the five inputs has the largest influence

on the strain distribution. Intuitively, if there is a large variation in the results of the

surrogate model when one parameter is held constant while the others vary, that pa-

rameter likely does not have a large influence on the strain distribution. By contrast,

if there is only a small variation in results when that parameter is held constant, it

is likely influential. The sensitivity analysis thus requires a large number of function

evaluations as different parameters are varied. The Satelli sampling scheme is used to

obtain a total of S × (2K + 2) samples, where S is a large number, for example on the

order of a thousand, and K is the dimension of the input space. Clearly, this kind of

analysis would be difficult to do with the original FE model. Instead, having trained

the GPs, we can use the surrogates to perform the many function evaluations required

for the sensitivity analysis. The Sobol sensitivity analysis on the outputs, obtained

via GP evaluations, decomposes the variance in the model output into variance that

can be attributed to each input and to the interaction between inputs.

10.2.5 Optimization of surgical plan

Another type of task that is enabled with the GP surrogates is flap optimization.

As will be shown in the Results section 10.3, the fiber direction (θ) is the most impor-

tant parameter for the resulting strain distribution following reconstructive surgery.

While the surgeon does not control the fiber direction of the patient’s skin, they do

control how the flap is oriented with respect to the anisotropic features of skin, re-

ferred clinically as the relaxed skin tension lines [345]. Therefore, knowledge of the

optimal fiber direction with respect to the orientation of the flap should be used for
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planning a surgery, even when other parameters are unknown or uncertain. We work

to determine an optimal fiber direction through minimizing cost functions.

Here we propose three cost functions informed by clinical guidelines [32,349,359]:

(1) C1: mean nodal strain, (2) C2: sum of tensile strains at key points near the wound

edges, (3) C3: sum of tensile strain at key points only at the distal ends of the flaps.

With x = (µ, k1, k2, κ, θ), mathematically, we have

C1(x) = Eavg ,

C2(x) =
∑

Edgepts i

〈Ei〉 , and

C3(x) =
∑

Distal pts i

〈Ei〉 .

(10.29)

These cost functions depend on all the material parameters. However, as men-

tioned, only the anisotropy direction θ is a design parameter for surgery. Thus, we

introduce the random vector φ = (µ, k1, k2, κ) capturing all the material parameters

other than θ. Assuming risk neutrality, we should select θ by minimizing the expec-

tation of the cost over the distribution of the parameters φ [364] such that

θ∗rn = arg min
θ
Ep(φ)[Ci] . (10.30)

To calculate the expectation, we take advantage of the GP and simply draw many

samples from p(φ) for a given value of θ. In practice, 1,000 samples per θ are sufficient

to obtain a sufficiently converged estimate of the expectation. The minimization with

respect to θ is done by calculating the expectation of the cost for a sufficiently refined

grid of θ values. In our case, we find that the function is smooth enough such that

181 values of θ (all values from 0◦ to 180◦ by 1◦, inclusive) are enough to interpolate

the expected cost. After performing these calculations, we get the expectation for

each value of θ and find the minimum.
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Under the assumption of extreme risk aversion, another strategy for determining

an optimal fiber direction is to minimize the worst-case scenario. In this case, the

problem is

θ∗ra = arg min
θ

arg max
φ∈supp(p(φ))

Ci (10.31)

where supp(p(φ)) is the support of the material parameter distribution. For the

most general case, the support corresponds to the parameter range defined in Table

10.1. The maximization problem with respect to φ is solved with a modified particle

swarm optimizer [365]. The algorithm begins by generating J random individual

inputs of the form φ j = (µ j, k1 j, k2 j, κ j). These are the particles in the swarm. For

each particle j, we then generate a random velocity (v j(t = 0)) and calculate its

current objective value (Cj(t = 0)), with t a pseudo-time used in the algorithm. These

objective values are set as the initial personal best locations (φ̂ j(t = 0)) for each

particle. The best objective value of all the personal bests is the global best location

(g(t = 0)). After initialization, the iterations are attempts to adjust the location of

the particles towards an optimal value. In each generation, or iteration, the velocity

of each particle is updated based on

v j(t + 1) = ωv j(t) + c1r1(φ̂ j(t) − φ j(t)) + c2r2(g(t) − φ j(t)) . (10.32)

Here, ωv j(t) is the inertial component and updates the velocity using the influence

of the particle’s current direction of movement. ω is the inertial coefficient, generally

taking a value between 0.8 and 1.2. The cognitive component, c1r1(φ̂ j(t) − φ j(t)),

updates the velocity based on the influence of the particle’s previous best position. c1

is referred to as the cognitive coefficient and generally takes a value of approximately

2, while r1 is a random value between zero and one. The last portion of the velocity

update is the social component, c2r2(g(t) − φ j(t)). Again, c2 is the social coefficient

and generally takes a value of about 2 while r2 is a random value between zero and

one. This last component updates the velocity with respect to the current global
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best position. Overall, each particle’s velocity is updated under the influence of its

current direction of motion, previous best position, and the global best position. The

particle’s position is then updated as

φ j(t + 1) = φ j(t) + v j(t + 1) . (10.33)

If this new position is within the valid range for φ and has an improved objective

value compared to the current personal best, it becomes the particle’s personal best.

The global best for the next generation is updated from the new positions at the end

of the iteration. The algorithm continues until the maximum number of generations is

reached or the global best solution fails to improve for 5 consecutive generations. The

overall result of the optimization is then the global best position and its corresponding

objective function value. This optimization is repeated 5 times to account for the

stochasticity in the algorithm and ensure that we do not move forward with a sub-

par optimization result.

Similar to the minimization problem in Eq. (10.30), for Eq. (10.31) we interpolate

the worst cost as a function of θ by solving the maximization over φ for 181 values of

θ. From this, we are then able to determine the value for theta that minimizes this

worst case scenario.

Finally, a brief discussion on p(φ) is needed. For the most general case, we perform

the optimization of the flap using the prior of the material parameters p0(φ), which is

a uniform distribution over the entire range in Table 10.1. This might be too broad

of a range. Hence, we also consider a distribution for the material parameters based

on one of the patient’s values reported in [23].
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10.3 Results

10.3.1 Exploring the effect of anisotropy in advancement, rotation and

transposition flaps

To begin, we explored the impact of anisotropy on strain profiles produced from

FE simulations. We ran 12 simulations taking the mean values for µ, k1, k2, and

κ from the range in Table 10.1 and varying θ at [0◦, 45◦, 90◦, 135◦]. The results are

shown in Fig. 10.2, where it can be observed that the overall trend of the strain

profiles follows the fiber direction. While these results are only true for one set of

parameters [µ, k1, k2, κ], they support the intuition that direction of anisotropy plays

an important role in flap design. For instance, for the advancement flap, fibers aligned

with the direction of advancement lead to high strains across the flap and surrounding

skin, from the proximal to the distal ends. As the fiber is rotated to 45◦ with respect

to the flap, the higher strains are oblique with respect to the advancement direction.

Interestingly, fibers oriented perpendicular to the direction of advancement lead to

compressive strains at the middle of the flap and overall small strains throughout

the skin patch. The last simulation shown for advancement, θ = 135◦, is similar to

θ = 45◦ since the flap is symmetric with respect to the horizontal axis.

In the rotation flap, fibers at θ = 0◦ result in relatively small strains near the base

of the flap, with a couple of small regions under compression and a narrow bad of

tissue in tension. In this case, the distal end has even lower strains. Rotating the

fibers to θ = 45◦ results in strains being greater along that direction, and overall

increasing in magnitude. This trend continues as the fibers are rotated to θ = 90◦.

For θ = 135◦, a band of high tensile strains extends from the base of the flap to

the distal end. As opposed to the advancement flap, the rotation design does not

have any symmetry. Additionally, the strain profiles from the rotation flap are more

intricate with respect to advancement, particularly near the base of the flap, due to

the point at which three different edges come together in a Y-junction.
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Fig. 10.2.: The distribution of maximum in-plane strain for the advancement, trans-
position, and rotation flaps at θ = [0◦, 45◦, 90◦, 135◦] with all other parameters at
mean values of their range. Strain patterns show features spanning the entire skin
region and aligning with the fiber orientation.

In the transposition case there are also no planes of symmetry, and changing the

fiber gradually from θ = 0◦ to θ = 135◦ yields vastly different strain contours. The

trends in the transposition flap are overall similar to the other designs, with higher

strains aligned with the fiber direction. Interestingly, the transposition design entails

greater reorientation of tissue, which can be seen as a more discontinuous pattern

of strain across the suture lines in the current configuration. For example, when

θ = 135◦, the bottom-right region of tissue is rotated approximately 60◦ before being

sutured to the top-left edge. Due to the mismatch in fiber direction in the current

configuration between the surrounding tissue and the distal portion of the flap that
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has been rotated, the surrounding skin at the top-left region is under high tensile

strain while the flap immediately adjacent is actually not subjected to higher strains.

The magnitude of the strains are different across flaps for a given orientation.

For instance, when θ = 90◦, the advancement flap shows the smallest strains while

the transposition flap has the highest strains. On the other hand, for θ = 0◦, the

advancement flap results in the highest strains compared to the other flaps. We

remark again that the results in Fig. 10.2 were obtained by fixing all other parameters

to their mean. In order to conduct a rigorous sensitivity analysis over the entire

parameter range, the surrogate models are needed to efficiently sample the input

space.

10.3.2 Creating and validating Gaussian process surrogates

The surrogates were trained using N = 2,000 FE simulations and validated on an

additional 400 parameter sets. The training and validation sets were obtained from

separate LHS instances. The majority of the simulations ran without artificial energy

dissipation. However, for the advancement case, a total of 159 simulations were run

with some dissipation, 55 of those incurred in up to 0.0001% artificial energy with

respect to total energy, 63 dissipated up to 0.001%, 30 simulations required 0.01%,

10 more needed 0.1% and only one was done with up to 1% dissipated energy with

respect to total energy. For the rotation flap, 205 simulations allowed for 0.001%

energy dissipation, 118 allowed 0.01%, 8 had 0.1%, and 6 were run with up to 1% of

artificial energy compared to total energy. For the transposition flap, out of the total,

in 230 cases the simulation was allowed to dissipate up to 0.001%, in 41 cases the

maximum was capped at 0.01%, and in 10 occasions there was an allowed maximum

energy dissipation of 0.1%.

After obtaining FE results for the strain distributions for each parameter set,

we reduced the dimensionality of these data with PCA. Initially, the overall strain

matrices had dimensions 2, 000 × 12, 004, 2, 000 × 12, 218, and 2, 000 × 12, 389 for the
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advancement, rotation, and transposition flaps, respectively. Using the PCA while

retaining 99% of the variation in the data, these were respectively reduced to 2, 000×

26, 2, 000 × 24, and 2, 000 × 23 datasets. The first 4 PCs for each flap alongside the

cumulative variance explained with each additional PC are reported in Fig. 10.3.

Unfortunately, PCs do not necessarily entail any physical meaning or intuition, as

opposed to the strain fields in Fig. 10.2. It is worthwhile to point out that in

previous work, ignoring anisotropy, less than 10 PCs were enough to account for

99.9% of the variance in stress profiles of the same three flap designs [101]. Thus, even

though anisotropy direction and fiber dispersion are only two additional parameters

with respect to previous work, they contribute to more complex strain and stress

distribution over the entire skin patches, clearly seen in Fig. 10.2. Nonetheless, PCA

is still able to reduce the dimensionality effectively.

We used the reduced data after truncating the PC basis at 99% of the variance, and

we trained independent GPs for each PC score for each flap. Next, we evaluated the

quality of the surrogate models. The validation simulations provide strain profiles

and not PC scores. While indeed we are ultimately interested in the prediction

of strains, first we investigated the performance of the individual GPs on the PC

space. The strain profiles from the validation set were hence projected to the PC

basis. Once the validation data was projected onto the reduced basis, we computed

the standardized residuals for the predicted PC scores. The standardized residuals

measure the difference between the prediction of the GP and the true value from the

validation set, divided by the predicted variance of the GP. Results are plotted in Fig.

10.4a. These histograms aggregate all the PC scores, i.e., we do not separate into

individual PC scores for each flap. For all flaps and all PC scores, the standardized

residuals fall mostly within the [−3, 3] confidence interval and are centered around

zero. In other words, we know that the majority of the validation points fall within

the 99.7% confidence range predicted by the GP surrogates. However, some points

do lie outside this range, especially for the rotation flap. This indicates that there
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Fig. 10.3.: First 4 principal components (PCs) plotted on the finite element meshes
for each of the three flaps. Cumulative explained variance (CEV) in accounting for
99% of the variation in the total data is shown in the last column for each of the
flaps. The first 4 PCs explain 86.1%, 85.3%, and 88.5% of the advancement, rotation
and transposition flaps respectively. PCs form an alternative basis for the strain
profiles which enable compressing of the data into very few features compared to the
number of nodes. Ultimately, to account for 99% of the variance, 26 PCs were kept
as a truncated basis for the advancement case, 24 for the rotation, and 23 for the
transposition flap.

may be areas of the parameter space that require further exploration, particularly for

some of the PC scores of the rotation flap.

The PC score prediction is not necessarily an indication of the performance of the

surrogate on the strain space, which is the quantity of interest. To compare directly

the prediction of the surrogates to the data from the validation set, we projected the

PC score prediction to the strain space using the inverse PCA transformation. Next,

we examined the l2-norm relative error of the strain prediction with respect to the
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Fig. 10.4.: Standardized residuals computed from comparing surrogate predictions
and validation data after it has been projected onto the principal component (PC)
basis (a). l2-norm of the relative error between the surrogate and the validation data
(b). To obtain strains, the predictions of the PC scores from the individual Gaussian
process surrogates are transformed via inverse PC analysis to the strain space. Surro-
gate predictions versus finite element simulation as truth for the minimum, median,
and maximum l2-norm relative errors (c).
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validation set. Fig. 10.4b depicts histograms of the l2-norm relative error and Fig.

10.4c showcases comparisons between truth and prediction for the best, median, and

worst l2-norm relative error cases for each flap. While the transposition and rotation

flaps do include a few outliers in terms of the l2-norm, the vast majority of relative

error values fall below 0.1 for advancement and transposition flaps and 0.2 for the

rotation flap. For the advancement flap, the maximum error is 0.109 with a mean

error of 0.026 and 99.5% (398 of 400 validation simulations) of the errors falling below

0.1. The transposition flap has a maximum error or 0.216 and mean error of 0.028

with 99.25% (397 of 400 validation simulations) of the errors falling below 0.1. The

rotation flap, however, has a wider distribution of error with a maximum value of

0.895, but with a mean of 0.065. In the rotation case, 82.0% of the errors fall below

0.1 (328 of 400 validation simulations). We remark that even with the wider error

distribution, even the worst prediction shows qualitative agreement with the truth as

seen in Fig. 10.4c, middle columns.

10.3.3 Sobol sensitivity analysis

Following the Methods section 10.2, we chose S = 1,000 for the sensitivity analysis,

and sampled a total of 1, 000 × (2 × 5 + 2) = 12, 000 parameter sets using the Satelli

sampling scheme. For each of these inputs, we used the surrogate models to predict

nodal strains. Rather than looking at the entire strain field and defining a global

scalar quantity of interest, we decided to focus on the strain value at specific locations.

We chose points deemed more important indicators for the clinical setting [32, 349].

These points are chosen near the suturing region, which is the zone where wound

healing must take place, and that may be affected by the stress or strain more directly

[3,330]. The points of interest are indicated in Fig. 10.5a. The results from the Sobol

sensitivity analysis using as quantity of interest the strain at the specific points are

depicted in Fig. 10.5b. These plots clearly illustrate that the fiber direction (θ) has

the most significant impact on variation in the nodal strains. As opposed to the
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a

b

Fig. 10.5.: Locations of key points used in the sensitivity analysis and in the opti-
mization steps (a). Sobol index for the nodal strain at each of the key points after
completing the analysis using 12, 000 predictions from the surrogate model (b).

results in Fig. 10.2, which show strain variations for four different angles but fixing

all other parameters, here we are able to sample the entire input space efficiently

using the surrogate model.

10.3.4 Optimizing flap orientation

In the clinical setting, the surgeon may not have access to reliable data on the

material properties, particularly the inputs µ, k1, k2, κ to the model, which can only be

obtained through mechanical testing [23, 178]. However, surgeons do typically have

knowledge of the anisotropy direction from anatomy and visual and manual inspection

[42,345]. Therefore, we decided to solve the optimization problem using the surrogate

in order to find the best flap orientation with respect to the direction of anisotropy. As

stated previously, excessive tension and deformation near a wound or sutured region

is a cause for wound healing complications and pathological scarring [3,267]. As such,
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the cost functions defined here generally focus on quantifying strain near the sutured

regions. As defined previously, these functions are: i) mean nodal strain, ii) sum of

tensile strains at key points near the would edges, and iii) sum of tensile strains at key

point(s) only at the distal ends of the flaps. For the second cost function, all points

selected for the sensitivity analysis are used. For the third cost function, point 2 is

selected for the advancement flap, points 3 and 4 are selected for the rotation flap, and

point 4 is selected for the transposition flap. Assuming that θ is the only input that

can be controlled and that no other information is available regarding φ = [µ, k1, k2, κ],

we first considered that the prior assumption for the mechanical response p0(φ) which

is just a uniform distribution in the range of Table 10.1. Additionally, we consider two

smaller, normal distributions of parameters: one surrounding the 59-year-old female

parameters defined in [23] and one surrounding the mean of the parameter ranges

in Table 10.1. The normal distributions here are defined to encompass ±10% of the

given parameter values within 3 standard deviations on each side of the mean.

Using the methods described above, we complete both optimization problems -

minimizing the expectation of the cost and minimizing the worst case scenario. The

particle swarm optimization for φ was completed with 50 particles, a maximum of

25 generations, and optimizer hyperparameters ω = 1.2, c1 = 2.0, and c2 = 2.0. The

initial particle distribution was created by selecting 50 random values in the ranges

listed in Table 10.1 and setting their initial velocities to random values between 0

and 80% of the range of values for each parameter. The results for the optimization

considering the distribution φ0 are illustrated in Figs 10.6-10.8 for the advancement,

rotation, and transposition flaps, respectively. These plots first show the cost distri-

butions for θ = [0◦, 45◦, 90◦, 135◦]. The second column shows the cost versus θ for

all 181 values of θ. The vertical lines correspond in color to the θ values selected to

illustrate the cost distribution. The gray shaded region illustrates the distribution of

the cost for each θ. Darker shading indicates higher frequency as values of the cost

are sampled by sampling the distribution p0(φ). The black data points in the middle

columns of Figs 10.6-10.8 are the expectation of the cost for every θ. The red data
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points in Figs 10.6-10.8 show the worst case scenario from the particle swarm opti-

mization for each θ. It is evident that, even though there is some variation, in general

both the expectation of the cost and the worst case scenario follow the same trend

with respect to θ. Consequently, the solutions to both the optimization problems are

approximately equivalent. The yellow points in the middle plots signal the value of θ

for which the expected cost achieves the minimum. The last column shows the strain

profile as predicted by the surrogate for the optimal points with respect to each of

the cost functions.

For the advancement flap, the optimal orientation of the flap with respect to the

anisotropy direction can be one of two options depending on which cost function is

used. Minimizing the mean nodal strain or the sum of the strains on the key points

around the suture line leads to the same optimal θ = 90◦. This result makes sense

and follows clinical guidelines [330, 350], which recommend advancing perpendicular

to the fiber orientation. When only the strain at a single point on the distal end is

considered, the cost function is relatively flat and low around θ = 90◦, but there is

also a local minimum around θ = 0◦. We plot this value in Fig. 10.6 to illustrate the

difference, although in reality, θ = 90◦ also achieves a low value of the expectation

of the cost function. On the other hand, the distribution of the cost for a given

θ suggests that the worst case scenario for may be worse for θ = 90◦. The strain

profile for this last cost function (minimizing only the strain at one point in the distal

end of the flap) shows higher strains overall, compared to optimization based on the

other two cost functions. For comparison, side by side strain profiles for θ = 90◦ and

θ = 180◦ can be found in the supplement. We also remark that the cost function

is symmetric around θ = 90◦ or θ = 0◦ which is expected since the flap design is

symmetric.

Next, looking at the rotation flap (Fig. 10.7), we see three different optimal

values for θ: 6◦, 25◦, and 45◦ for mean nodal strain, sum of all key strains, and sum

of key distal strains, respectively. We no longer have the symmetry seen with the

advancement flap, as the rotation flap is not symmetric across either major axis. We
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Fig. 10.6.: Results of optimization for the advancement flap. The first column shows
cost distributions for five values of θ. The second column shows the cost versus θ
plots. The vertical lines of different color correspond to the selected values of θ in the
first column. In the middle column, the shaded area corresponds to the distribution
of the cost as samples from p0(φ) are taken. The expected value of the cost is shown
as the black solid line, and the minimum of this expectation is the yellow point in the
plot. The red data points show the worst case scenario computed from the particle
swarm optimization for each θ. The strain profile corresponding to the minimum
expected cost is shown in the third column. The rows denote the three different cost
functions introduced in the main text

do, however, note that the optimal results for both objective functions are roughly

equivalent as seen in the last column of Fig. 10.7. For all three functions, there is a

wide distribution of the cost because we used the prior p0(φ). Even though we will

introduce narrower distributions, using the prior is still advantageous because it can

provide general guidelines even when no specific patient information is available. One
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Fig. 10.7.: Results of optimization for the rotation flap. The first column shows cost
distributions for five values of θ. The second column shows the cost versus θ. The
vertical lines correspond to the selected values of θ in the first column. The shaded
area shows the distribution of the cost obtained from sampling values from p0(φ), the
prior over the material parameters. The solid black line is the expected cost with
minimum indicated by the yellow point. The red data points show the worst case
scenario obtained from the particle swarm optimizer for each value of θ. The strain
profile corresponding to the minimum expected cost is shown in the third column.
Each row corresponds to a different cost function.

of the key insights from using this wide distribution is the dependence of the worst

case scenario as a function of θ. Looking at the red points in the middle column of

Fig. 10.7, it is clear that worst case scenario can vary widely as θ changes. Similar

to the advancement case, the worst case scenario follows closely the trends from the
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Fig. 10.8.: Results of optimization for the transposition flap. The first column shows
cost distributions for five values of θ. The second column shows the cost versus θ.
The vertical lines of different color correspond to the selected values of θ in the first
column. The solid black line in the middle column is the curve of the expected cost
as a function of θ, while the gray shaded regions show the distribution of the cost
which follows from sampling material parameters from p0(φ). The yellow points on
the expected cost curve denotes the minimum of the curve. The worst case scenario
for each θ obtained with the particle swarm optimizer is depicted with red points on
the middle column. The strain profile corresponding to the minimum expected cost
is shown in the third column.

expected cost, but offers perhaps a better argument to restrict θ to a smaller range

of approximately [10, 40] even when no other information is available.

For the transposition flap (Fig. 10.8), we again do not have symmetry with respect

to θ. The different cost functions with respect to θ show unique features and lead to
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very different optimal strain profiles. The optimal values for θ are 180◦, 45◦, and 92◦

for the mean nodal strain, sum of all key strains, and sum of key distal strains cost

functions, respectively. Note that the cost functions are periodic and thus, for the

mean nodal strain, the strain for θ = 0◦ is roughly equivalent to that for θ = 180◦.

The worst case scenario in this flap also follows the trends from the expectation of the

cost. The fact that the cost functions produce different results underscores the need

to narrow down the design criteria for this flap. As mentioned in the Methods section

10.2, clinical guidelines support the idea of minimizing the overall deformation, but

also suggest that points near the wound might be more at risk of complication such

as wound dehiscence or scarring, while distal points in the flap may be more at risk of

ischemia and necrosis [3,330,354]. The results shown here suggest that each of these

objectives can lead to a different choice of θ and therefore a careful examination of

the relative importance of each of these objectives is needed.

After evaluating the optimal design for the most general case in which no infor-

mation is available for the material parameters φ, we narrow our scope to two cases

in which instead of using the prior p0(φ), we assume that we have knowledge of in-

dividual parameter distributions for two cases. As described above, we solved the

optimization problem described in Eq. (10.30) using pm(φ), a normal distribution

around the mean of the parameter ranges described in Table 10.1, and also pi(φ) a

narrow normal distribution around the parameters of a 59-year-old female reported

in [23]. In Fig. 10.9, we plot the expected value of the cost versus θ for these two

distributions, pm(φ) and pi(φ), as well as the expected cost from the general study,

p0(φ). For the cases in which we sample from pm(φ) and pi(φ) we also show shaded

regions around the expected cost to contrast the variation in the cost in these cases

with respect to what is observed for p0(φ) in Figs 10.6-10.8. Immediately we note that

the general trend of the curves for each of the individual cases is very similar to the

general case in which the wide prior p0(φ) was used. The values for θ that minimizes

cost for each of these parameters fall within a small range. We also note that the
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area of uncertainty around the expected cost is much smaller than before, which is

expected since now the parameters φ are sampled from narrower distributions.

Fig. 10.9.: Expected value of cost for 3 distributions of the material parameters p(φ):
entire range, uniform distribution (p0(φ)); mean of range, normal distribution (pm(φ));
and 59-year-old female, normal distribution (pi(φ)). The shaded regions around pm(φ)
and pi(φ) indicate the cost distribution, while the solid line denotes the expectation
of the cost. For the prior distribution p0(φ) only the expected cost is shown.
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10.4 Discussion

The goal of the present manuscript was twofold. First, we sought to understand

the impact of anisotropy on local reconstructive surgery flaps. Second, we aimed

to develop computationally inexpensive surrogate models to quickly predict strain

profiles for an arbitrary set of material parameters including anisotropy, enabling

tasks such as optimization, uncertainty propagation, or model calibration needed in

the clinical application. We focused on the three most common local reconstructive

surgery flap designs - the advancement, rotation, and transposition flaps [329,330].

The method relies first on thoroughly but efficiently exploring the input space

of material parameters with a relatively small number of well-selected and semi-

automated FE simulations, about 2, 000 per flap. The input space considered is

five-dimensional, including anisotropy, and is based on a well-established hyperelastic

model of collagenous tissues [57,118]. The range of the parameters was based on the

literature and spans up to three orders of magnitude for some parameters [23,51,361].

The output data from the detailed FE model is the high-dimensional strain field, on

the order of tens of thousands of nodal values, which is not suitable for building

the surrogates. We showed that PCA can reduce the dimensionality to a basis of

approximately 30 features that capture more than 99% of the variance in the data.

The GP surrogates trained on the reduced data can accurately predict the high-

dimensional strain fields for any other input within the feasible range, as evidenced

by the l2-norm of the error on the validation set. Unlike the original FE model,

the surrogate is computationally inexpensive and enables fast prediction for arbitrary

material properties, including anisotropy. We used the surrogates to perform a Sobol

sensitivity analysis and determined that the fiber direction (θ) is the most significant

parameter to variations in the strain profiles. In view of the sensitivity analysis, we

posed several optimization problems to identify the best orientation of the flaps with

respect to anisotropy direction.
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10.4.1 Performance of Gaussian process surrogates

Overall the GP surrogates performed well on the validation set, enabling fast

prediction of the full strain fields for arbitrary choice of material properties. The

advancement and transposition results were very accurate, with average errors of

less than 2%, while the rotation results had larger errors and standardized residuals.

There are numerous possible causes for this issue. One, the nodal strains for the

rotation flap may vary more than those of the transposition and advancement flap.

Thus, N = 2, 000 training data sets may not have been sufficient to fully explore

the outputs space for the rotation flap. Using more simulations for training may

help overcome this issue. In addition, reducing the dimensionality of the output

data with PCA does entail a loss of 1.0% of the information, which could have been

problematic for the rotation flap. Third, the suturing scheme for this flap leads to very

intricate strain field, possibly singular, near the Y-junction at the base, which should

be investigated further. A mesh sensitivity analysis was conducted for all flaps, but

only for one set of parameters; yet, it is possible that the mesh is not refined enough

for other regions of the parameter space. Despite larger errors in the rotation flap

with respect to the other two strategies, the average l2-norm of the relative error was

still below 6.5% and this value was considered accurate enough for our purposes.

In previous work, we also looked at the same flap designs - advancement, rotation,

transposition- but we considered isotropic material properties [101]. In that work we

showed that a smaller training of approximately N = 1, 000 simulations was enough

to capture the response function. The material model used in [101] was the same as

the one used here, yet, ignoring anisotropy, the input space consisted of only three

parameters. The PCA step for the isotropic material revealed that 99.9% of the

variance could be captured with less than 10 features. Here, adding two parameters

for anisotropy increased the dimension of the final PC basis, with roughly 30 features

needed to describe 99% of the variance. Compared to previous work, we increased the

training data to N = 2, 000, which was enough to produce very good results for the
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advancement and transposition surrogates, but only acceptable errors for the rotation

case. While more FE simulations are likely to improve our predictions, we considered

N = 2, 000 to be a reasonable computational expense for the resulting accuracy, given

that each simulation takes approximately three to five minutes on two Sky Lake CPUs

at 2.60 GHz. One of the main advantages of using GP surrogates is that they not

only provide a prediction of the response function, but also of the uncertainty in

that prediction. This information can be used, for example, to guide active learning

strategies and run more simulations if needed, but only at points in the input space

in which it would reduce the variance of the GP [157].

10.4.2 Optimal flap orientation

One key result of this study is that the fiber direction (θ) proved to be the most

influential parameter on the variations in the strain profiles. This is significant be-

cause this parameter can be controlled clinically, unlike the other parameters. While

a surgeon cannot control the direction of the skin’s collagen fiber network, they can

control the orientation of the flap with respect to the direction of anisotropy of skin.

Clinically, the anisotropy direction for skin is described based on anatomy and com-

monly referred to as the direction of relaxed skin tension [345]. Thus, by orienting the

flap in an optimal direction with respect to this direction of anisotropy, which we con-

sider aligned with the underlying collagen network, the surgeon has some control over

the resulting strain, ideally reducing complications in the healing process. While an

initial optimization study was completed here, it would be useful to expand this study

to gain a better understanding of the optimal value of θ for more realistic scenarios

and refined cost functions. We posed three cost functions in light of clinical guide-

lines which suggest that surgery should minimize overall deformation, but especially

deformation near the suture line and at distal ends of the flap [3,32,330,349,354]. For

the advancement flap, which has the most intuitive strain distribution, the result of

our optimization aligns with the clinical recommendation of advancing perpendicular
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to the anisotropy direction. For the other two flaps, however, the strain distribution

is more complex and the influence of the material properties is more noticeable. Our

results suggest that for the rotation flap, angles in the approximate range [10◦, 40◦]

are optimal. For the transposition case, we could not identify a consistent result

based on the three different objective functions. In the transposition case, minimiz-

ing the average strain yields a different result compared to minimizing the sum of the

strains near the suture region, and is also different from minimizing only the strains

at the distal end of the flap. Therefore, more information is needed to refine the cost

function that truly leads to the best clinical outcome.

The initial optimization was done under the assumption that no information is

available about the material properties of an individual. We then also explored the

case in which some information is available. While having additional information

reduced the uncertainty in the cost function, the results aligned with the more general

case. Thus, we expect that our analysis with the most general distribution of material

parameters should be useful to guide the flap design in the clinical setting, even when

no information about skin material properties are available.

10.4.3 Limitations and ongoing work

There are multiple limitations to this work that should be recognized. First, even

though the surrogates are accurate over a broad input space covering the material

response of skin, more input parameters need to be considered. For instance, we

considered a single suturing scheme and a single set of boundary conditions. Future

work includes incorporating changes in geometric parameters of the flaps, such as

angle of transposition or angle of rotation for these two flap designs, or base to width

ratio for the advancement flap. Suturing schemes can also be optimized and should

thus be considered as inputs in metamodel creation, as well as the change in boundary

conditions.
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Another limitation of the current work is the need for validation in the clinical

setting. Numerical models of soft tissues are well-established [14, 19]. In particular

regarding skin, the GOH hyperelastic material model has been deemed appropriate

to capture the response of skin under tensile loading [118,360]. However, assumption

of hyperelasticity is debatable for larger time scale for which the tissue may show

viscoelastic behavior [366]. The interaction between the skin and the underlying

tissues is also ignored in this model, but could be important in a more realistic

setting. The influence of pre-stress is also ignored in this study, but it could be an

important factor [127]. Finally, in vivo measurem in the clinical setting [181,303,367].

Thus, while we are confident that the results shown here provide valuable insight into

flap biomechanics and should be used to improve flap design, the models still need to

be further validated with clinical data, which is the central task of our ongoing work.

10.5 Conclusion

In summary, we showed that a few detailed finite element simulations, paired

with reduced order modeling strategies, can be used to create inexpensive yet accu-

rate Gaussian process surrogate models of the three most common flap designs. The

surrogate models enable immediate prediction of strain profiles for arbitrary mate-

rial properties including anisotropy, enabling tasks such as uncertainty propagation,

model calibration, sensitivity analysis, and optimization. The direction of anisotropy

with respect to the flap design is the single most important parameter that the sur-

geon can control to optimize a desired strain objective, even when the other material

parameters are completely unknown.



286

11. CONCLUSIONS AND OUTLOOK

This dissertation focused on improving reconstructive surgery through computational

biomechanics. Even though mechanical cues are recognized as a critical factor driving

wound healing complications, planning to reduce mechanical stress on tissues is still

done based on each surgeon’s training and experience rather than with quantitative

and precise tools. Computational mechanics seems like an obvious tool to address this

need, yet, simulations of tissue mechanics are not currently being used in the clinical

setting. We asked why. The gaps we found are the driving motivation for the studies

presented here. The core of the dissertation deals with the inherent uncertainty in

biological systems. In the context of reconstructive surgery, this uncertainty is due to

three sources: variability in individual patient geometry and clinical need, variability

in mechanical behavior of skin, variability of biological response. To deal with the

uncertainty analysis, the dissertation focused on the use of Bayesian approaches aided

by machine learning.

Computational simulations of skin reconstruction require knowledge of the pa-

tient geometry, the surgery plan, and the material properties including the state of in

vivo pre-stress. Different tools have been introduced to address each of these require-

ments. For example, different means of obtaining three-dimensional patient specific

geometries are available, such as computer tomography scans and magnetic resonance

imaging. For the case of skin, stereo-vision systems have been more common recently.

Yet, these methods still rely on specialized equipment. We presented here the use

of multi-view stereo (MVS) to create individual geometries. MVS requieres multi-

ple images taken with any digital camera, and uses feature matching across pairs of

photographs to back-calculate the camera position. This method is thus flexible and

affordable, and we expect that it will broaden the use of computational models on

patient-specific geometries. Further work on this pipeline is needed to automate the
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geometric model creation to make it more robust and easy-to-use by surgeons. For

example, work on creating atlas models and machine learning algorithms to improve

mesh generation are one possible direction for future research in this area.

Material behavior of skin has been characterized ex vivo under a variety of uni-

axial and biaxial loading conditions. These tests have revealed the characteristic

features of skin’s mechanical behavior. Like many collagen-based tissues, skin shows

an exponential stiffening at larger stretches. Various strain energy functions have

been proposed to describe this behavior. Thus, many efforts on this regard are re-

stricted to considering skin as a hyperelastic material. The ex vivo tests have shown,

besides the exponential behavior, that soft tissues are inherently variable. Skin me-

chanical properties change with age, anatomical location, gender, with environmental

conditions, and even from patient to patient. This has further contributed to the

development of in vivo measurement techniques. Suction is the the most common.

While the suction devices have definitely helped acquiring more personalized param-

eters, much work remains in this area. The main gaps in this setting are that the

material parameters from suction measurements are not directly available. Given the

complex loading scenario in vivo, analytical approximations are inaccurate. Classical

inverse finite elements, on the other extreme, are ill-posed and time and resource

intensive. We show a Bayesian framework for calibration of material properties that

relies on surrogate models created through machine learning. Our approach thus leads

to the inherent uncertainty of material behavior, used prior information, and is com-

putationally efficient. We further show how different openings of the suction device

and loading conditions can be used to maximize information and improve calibration.

Further work in this are is the acquisition of patient data and improvement of the

constitutive models considering other effects beyond hyperelastic behavior, such as

viscoelastic effects.

The state of pre-stress has also been documented, starting with the seminal work

of Langer in the nineteenth century who measured residual deformation in cadavers.

The state of pre-stress is often changed in reconstructive surgery in the technique of
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tissue expansion. Skin grows in response to tissue expansion. This biological adap-

tation introduced a new type of uncertainty. The mechanobiology of skin growth is

still poorly understood. In this dissertation we show first how to characterize the

mechanics of skin growth with continuum mechanics on an animal model of tissue

expansion. The method relies on MVS and isogeometric analysis. We showed that,

following the framework of finite growth - the multiplicative split of the deformation

gradient into growth and elastic contributions - we can describe skin adaptation to

chronic hyper-stretch induced by the tissue expansion process. This work showed,

on the other hand, the importance of the uncertainty analysis not just considering

mechanical properties but also biological behavior. In order to do model calibration

with this noisy data we developed a multi-fidelity surrogate model framework that in-

corporates the different sources of uncertainty, biological and mechanical. This work

has thus settled the methodology and initial data for skin growth models. Much work

remains to be done in this area. Certainly more animal data is needed before extend-

ing this tool to the clinical setting. More work on calibration of the computational

model is also needed and underway using the tools developed in this dissertation.

The last portion of the dissertation addresses directly the computational mod-

eling of the reconstructive surgery step. We showed first the effect of uncertainty

in mechanical behavior and simple geometric quantities on the stress profiles from

idealized flap designs. We studied the mechanics of advancement, transposition and

rotation flaps in flat geometries. This setting allowed us to dissect the distinctive

features of these flap designs, and the effect of material behavior uncertainty. To

do so, we once again posed the problem within a Bayesian framework witht he help

of machine learning tools to deal with the computational cost. We found that the

most sensitive parameter for the design of the flap is the direction of anisotropy and

offered recommendations for surgeons based on our analysis of flap biomechanics.

Combining these techniques with patient-specific geometries, we further showed the

variations in stress profiles in the patient geometries when the material properties are

uncertain. Our analysis cemented the notion that predictive models have to account
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for mechanical behavior uncertainty and provide probabilities of stress rather than

single predictions which may lead to erroneous conclusions about the stress profile for

an individual. At the time of writing of this dissertation, the work on patient-specific

rotation flaps is being considered in a clinical journal and thus shows the potential

impact of our work in the clinical setting in the near future. More work is also needed

in this area in the future. The current pipeline is still not automated and not robust

compared to the idealized cases. Thus, one avenue of research would be to further

develop the model generation algorithms leveraging our previous work. Lastly, an

important limitation of restricting our attention to the biomechanics of reconstruc-

tive surgery is that we ignore the processes that take place immediately after surgery.

The wound healing process following surgery is complicated and involves many other

factors that just mechanical cues. For instance, blood flow and inflammation are also

incredibly important in the subsequent healing progression after surgery, but we are

not incorporating those aspects into out model. Therefore, perhaps the widest and

most challenging avenue of research in the future would be to not just improve our

recommendation of flap design based solely on mechanics, but to predict the final

outcome.

In summary, this dissertation has improved our understanding of different recon-

structive surgery techniques in terms of skin mechanics. In particular, we have shown

the importance of considering the uncertainty of skin mechanical and biological re-

sponse when designing reconstructive procedures in ideal and individual cases. We

are confident that the tools and results presented are impacting medicine and will

continue to do so as these technologies are developed further.
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